Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

There are $ 2\sp c$ symmetrically continuous functions


Author: Miroslav Chlebík
Journal: Proc. Amer. Math. Soc. 113 (1991), 683-688
MSC: Primary 26A15; Secondary 26A21
DOI: https://doi.org/10.1090/S0002-9939-1991-1069685-8
MathSciNet review: 1069685
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to prove that the power of the set of symmetrically continuous real functions is $ {2^c}$ ($ c$ is the power of the continuum). This surprisingly contrasts with the set of continuous (or Borel) real functions, the power of which is $ c$.


References [Enhancements On Off] (What's this?)

  • [1] N. K. Bari, Trigonometrical series, Moscow, 1961. (Russian)
  • [2] M. J. Evans and L. Larson, The continuity of symmetric and smooth functions, Acta Math. Hungar. 43 (1984), 251-257. MR 733857 (85h:26005)
  • [3] H. Fried, Über die symmetrische Stetigkeit von Funktionen, Fund. Math. 29 (1937), 134-137.
  • [4] F. Hausdorff, Problem #62, Fund. Math. 25 (1935), 578.
  • [5] L. Larson, Symmetric real analysis, Real Anal. Exchange 4 (1983-84), 154-178. MR 742782 (85f:26024)
  • [6] -, Query #170, Real Anal. Exchange 4 (1983-84), 29.
  • [7] D. Preiss, A note on symmetrically continuous functions, Časopis Pěst. Mat. 96 (1971), 262-264. MR 0306411 (46:5537)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A15, 26A21

Retrieve articles in all journals with MSC: 26A15, 26A21


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1069685-8
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society