Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximal functions, $ A\sb \infty$-measures and quasiconformal maps


Author: Susan G. Staples
Journal: Proc. Amer. Math. Soc. 113 (1991), 689-700
MSC: Primary 30C65; Secondary 42B25
DOI: https://doi.org/10.1090/S0002-9939-1991-1075951-2
MathSciNet review: 1075951
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the study of quasiconformal maps, one commonly asks, "Which classes of maps or measures are preserved under quasiconformal maps?", and conversely, "When does the said preservation property imply the quasiconformality of the map?". These questions have been studied by Reimann and Uchiyama with respect to the classes of BMO functions, maximal functions, and $ {A_\infty }$-measures. But, both authors assumed additional analytic hypotheses to establish the quasiconformality of the map. In this paper we utilize the geometry of quasiconformal maps to eliminate these auxiliary hypotheses and present results in the cases of maximal functions and $ {A_\infty }$-measures.


References [Enhancements On Off] (What's this?)

  • [A] K. Astala, A remark on quasi-conformal mappings and BMO functions, Michigan Math. J. 30 (1983) 209-212. MR 718266 (85h:30022)
  • [CF] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. MR 0358205 (50:10670)
  • [G] F. W. Gehring, The $ {L^p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277. MR 0402038 (53:5861)
  • [GO] F. W. Gehring and B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Analyse Math. 36 (1979), 50-74. MR 581801 (81k:30023)
  • [J] P. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66. MR 554817 (81b:42047)
  • [JN] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 24 (1961), 415-426. MR 0131498 (24:A1348)
  • [M] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 24 (1961), 577-591. MR 0159138 (28:2356)
  • [R] H. M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv. 49 (1974), 260-276. MR 0361067 (50:13513)
  • [RR] H. M. Reimann and T. Rychener, Funktionen beschränkter mittlerer oszillation, Lecture Notes in Math., vol. 487, Springer-Verlag, New York, 1975. MR 0511997 (58:23564)
  • [S] S. G. Staples, $ {L^p}$-averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 103-127. MR 997974 (90k:42024)
  • [U] A. Uchiyama, Weight functions of the class $ ({A_\infty })$ and quasiconformal mappings, Proc. Japan Acad. 50 (1975), 811-814. MR 0442226 (56:612)
  • [V] J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I Math. 298 (1961), 1-36. MR 0140685 (25:4100a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C65, 42B25

Retrieve articles in all journals with MSC: 30C65, 42B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1991-1075951-2
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society