Algebras realized by rational homotopy types

Author:
Gregory Lupton

Journal:
Proc. Amer. Math. Soc. **113** (1991), 1179-1184

MSC:
Primary 55P62; Secondary 16W50, 55P15

DOI:
https://doi.org/10.1090/S0002-9939-1991-1073529-8

MathSciNet review:
1073529

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: I construct an example of a graded algebra that is realized as the rational cohomology algebra of exactly rational homotopy types, for each natural number . The algebras constructed have trivial multiplicative structure. Similar examples are given of graded Lie algebras realized as the rational homotopy Lie algebra of exactly rational homotopy types.

**[BL]**H. J. Baues and J. M. Lemaire,*Minimal models in homotopy theory*, Math. Ann.**225**(1977), 219-242. MR**0431172 (55:4174)****[HL]**S. Halperin and J.-M. Lemaire,*Suites inertes dans les algèbres de Lie graduées*, Math. Scand.**61**(1987), 39-67. MR**929396 (89e:55022)****[LU]**G. M. Lupton and R. N. Umble,*Rational homotopy types with the rational cohomology of stunted complex projective space*, preprint.**[NM]**J. Neisendorfer and T. J. Miller,*Formal and coformal spaces*, Illinois J. Math.**22**(1978), 565-580. MR**0500938 (58:18429)****[QU]**D. Quillen,*Rational homotopy theory*, Ann. of Math. (2)**90**(1969), 205-295. MR**0258031 (41:2678)****[SS]**M. Schlessinger and J. Stasheff,*Deformation theory and rational homotopy type*, preprint.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55P62,
16W50,
55P15

Retrieve articles in all journals with MSC: 55P62, 16W50, 55P15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1073529-8

Keywords:
Rational homotopy types,
classification

Article copyright:
© Copyright 1991
American Mathematical Society