Regular PI metric flows are equicontinuous

Author:
Eli Glasner

Journal:
Proc. Amer. Math. Soc. **114** (1992), 269-277

MSC:
Primary 54H20

DOI:
https://doi.org/10.1090/S0002-9939-1992-1070517-3

MathSciNet review:
1070517

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a metrizable minimal flow. We show that a homomorphism , which is regular, and PI can be decomposed as , where is proximal and is a compact group extension. In particular, assuming further that is abelian and taking to be the trivial one point flow, we find that a metric regular PI flow is a compact group rotation.

**[A]**J. Auslander,*Minimal flows and their extensions*, North-Holland, Amsterdam, 1988. MR**956049 (89m:54050)****[B]**S. Banach,*Théorie des opérations linéaires*, Chelsea, New York, 1963.**[E]**R. Ellis,*Lectures on topological dynamics*, Benjamin, New York, 1969. MR**0267561 (42:2463)****[F]**H. Furstenberg,*The structure of distal flows*, Amer. J. Math.**85**(1963), 477-515. MR**0157368 (28:602)****[Gl]**S. Glasner,*A topological version of a theorem of Veech and almost simple flows*, Ergodic Theory Dynamical Systems**10**, (1990), 463-482. MR**1074314 (92e:28012)****[G2]**-,*Proximal flows*, Lecture Notes in Math., vol. 517, Springer-Verlag, New York, 1976. MR**0474243 (57:13890)****[Go]**W. H. Gottschalk,*Transitivity and equicontinuity*, Bull. Amer. Math. Soc.**54**(1948), 982-984. MR**0026765 (10:199c)****[K]**K. Kuratowski,*Topology*, vol. I., Warsaw 1948. MR**0217751 (36:840)****[N]**I. Namioka,*Ellis groups and compact right topological groups*, Conference in Modern Analysis and Probability, Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 295-300. MR**737409 (85j:54061)****[V]**W. A. Veech,*Topological dynamics*, Bull. Amer. Math. Soc.**83**(1977), 775-830. MR**0467705 (57:7558)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54H20

Retrieve articles in all journals with MSC: 54H20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1070517-3

Article copyright:
© Copyright 1992
American Mathematical Society