Banach spaces in which every compact lies inside the range of a vector measure

Authors:
C. Piñeiro and L. Rodríguez-Piazza

Journal:
Proc. Amer. Math. Soc. **114** (1992), 505-517

MSC:
Primary 46B20; Secondary 46G10

DOI:
https://doi.org/10.1090/S0002-9939-1992-1086342-3

MathSciNet review:
1086342

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the compact subsets of a Banach space lie inside ranges of -valued measures if and only if can be embedded in an space. In these spaces we prove that every compact is, in fact, a subset of a compact range. We also prove that if every compact of is a subset of the range of an -valued measure of bounded variation, then is finite dimensional. Thus we answer a question by R. Anantharaman and J. Diestel.

**[AD]**R. Anantharaman and J. Diestel,*Sequences in the range of a vector measure*, preprint. MR**1122692 (92g:46049)****[De]**D. W. Dean,*The equation**and the principle of local reflexity*, Proc. Amer. Math. Soc.**40**(1973), 146-148. MR**0324383 (48:2735)****[D]**J. Diestel,*Sequences and series in Banach spaces*, Graduate Texts in Math., vol. 92, Springer-Verlag, New York, 1984. MR**737004 (85i:46020)****[DU]**J. Diestel and J. J. Uhl,*Vector measures*, Math. Surveys Monogr., vol. 15, Amer. Math. Soc., Providence, RI, 1977. MR**0453964 (56:12216)****[KK]**I. Kluvanek and G. Knowles,*Vector measures and control systems*, Math. Stud., vol. 20, North-Holland, 1976. MR**0499068 (58:17033)****[J]**G. J. O. Jameson,*Summing and nuclear norms in Banach space theory*, Stud. Texts, vol. 8, London Math. Soc., Cambridge Univ. Press, 1987. MR**902804 (89c:46020)****[LP]**J. Lindenstrauss and A. Pełczynski,*Absolutely summing operators in**-spaces and their applications*, Studia Math.**29**(1968), 275-326. MR**0231188 (37:6743)****[P]**G. Pisier,*Factorization of linear operators and geometry of Banach spaces*, Conf. Board Math. Sci. Regional Conf. Ser. Math., vol. 60, Amer. Math. Soc., Providence, RI, 1984. MR**829919 (88a:47020)****[R]**L. Rodriguez-Piazza,*The range of a vector measure determines its total variation*, Proc. Amer. Math. Soc.**111**(1991), 205-214. MR**1025281 (91e:46053)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B20,
46G10

Retrieve articles in all journals with MSC: 46B20, 46G10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1086342-3

Keywords:
Vector measures,
range,
Banach spaces,
compact sets,
subspaces of

Article copyright:
© Copyright 1992
American Mathematical Society