Banach spaces in which every compact lies inside the range of a vector measure

Authors:
C. Piñeiro and L. Rodríguez-Piazza

Journal:
Proc. Amer. Math. Soc. **114** (1992), 505-517

MSC:
Primary 46B20; Secondary 46G10

DOI:
https://doi.org/10.1090/S0002-9939-1992-1086342-3

MathSciNet review:
1086342

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the compact subsets of a Banach space lie inside ranges of -valued measures if and only if can be embedded in an space. In these spaces we prove that every compact is, in fact, a subset of a compact range. We also prove that if every compact of is a subset of the range of an -valued measure of bounded variation, then is finite dimensional. Thus we answer a question by R. Anantharaman and J. Diestel.

**[AD]**R. Anantharaman and J. Diestel,*Sequences in the range of a vector measure*, Comment. Math. Prace Mat.**30**(1991), no. 2, 221–235. MR**1122692****[De]**David W. Dean,*The equation 𝐿(𝐸,𝑋**)=𝐿(𝐸,𝑋)** and the principle of local reflexivity*, Proc. Amer. Math. Soc.**40**(1973), 146–148. MR**0324383**, https://doi.org/10.1090/S0002-9939-1973-0324383-X**[D]**Joseph Diestel,*Sequences and series in Banach spaces*, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR**737004****[DU]**J. Diestel and J. J. Uhl Jr.,*Vector measures*, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR**0453964****[KK]**Igor Kluvánek and Greg Knowles,*Vector measures and control systems*, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976. North-Holland Mathematics Studies, Vol. 20; Notas de Matemática, No. 58. [Notes on Mathematics, No. 58]. MR**0499068****[J]**G. J. O. Jameson,*Summing and nuclear norms in Banach space theory*, London Mathematical Society Student Texts, vol. 8, Cambridge University Press, Cambridge, 1987. MR**902804****[LP]**J. Lindenstrauss and A. Pełczyński,*Absolutely summing operators in 𝐿_{𝑝}-spaces and their applications*, Studia Math.**29**(1968), 275–326. MR**0231188**, https://doi.org/10.4064/sm-29-3-275-326**[P]**Gilles Pisier,*Factorization of linear operators and geometry of Banach spaces*, CBMS Regional Conference Series in Mathematics, vol. 60, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR**829919****[R]**Luis Rodríguez-Piazza,*The range of a vector measure determines its total variation*, Proc. Amer. Math. Soc.**111**(1991), no. 1, 205–214. MR**1025281**, https://doi.org/10.1090/S0002-9939-1991-1025281-X

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B20,
46G10

Retrieve articles in all journals with MSC: 46B20, 46G10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1086342-3

Keywords:
Vector measures,
range,
Banach spaces,
compact sets,
subspaces of

Article copyright:
© Copyright 1992
American Mathematical Society