Fay's trisecant formula and crossratios
Author:
Cris Poor
Journal:
Proc. Amer. Math. Soc. 114 (1992), 667671
MSC:
Primary 14H42
MathSciNet review:
1062834
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This note considers Fay's trisecant formula as a relation between crossratio functions and thereby gives a simple proof of the trisecant formula. In this proof the expression for the crossratio function is lifted from the theta locus to the entire Jacobian. Variations of the formula as used by different authors are also given.
 [1]
Hershel
M. Farkas, On Fay’s trisecant formula, J. Analyse Math.
44 (1984/85), 205–217. MR 801294
(86j:14027), http://dx.doi.org/10.1007/BF02790197
 [2]
Hershel
M. Farkas and Irwin
Kra, Riemann surfaces, Graduate Texts in Mathematics,
vol. 71, SpringerVerlag, New YorkBerlin, 1980. MR 583745
(82c:30067)
 [3]
John
D. Fay, Theta functions on Riemann surfaces, Lecture Notes in
Mathematics, Vol. 352, SpringerVerlag, BerlinNew York, 1973. MR 0335789
(49 #569)
 [4]
R.
C. Gunning, Lectures on Riemann surfaces, Jacobi varieties,
Princeton University Press, Princeton, N.J.; University of Tokyo Press,
Tokyo, 1972. Mathematical Notes, No. 12. MR 0357407
(50 #9875)
 [5]
, Lecture notes on theta functions. Parts and , Princeton University (1987) (to appear in the next edition of 'Lectures on Riemann surfaces').
 [6]
R.
C. Gunning, Some identities for abelian integrals, Amer. J.
Math. 108 (1986), no. 1, 39–74 (1986). MR 821313
(87h:14026), http://dx.doi.org/10.2307/2374468
 [7]
David
Mumford, Tata lectures on theta. II, Progress in Mathematics,
vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian
theta functions and differential equations; With the collaboration of C.
Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. MR 742776
(86b:14017)
 [1]
 H. M. Farkas, On Fay's trisecant formula, J. Analyse Math. 44 (1984). MR 801294 (86j:14027)
 [2]
 H. M. Farkas and I. Kra, Riemann surfaces, Graduate Texts in Math., vol. 71, Springer, New York and Berlin, 1980. MR 583745 (82c:30067)
 [3]
 J. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., vol. 352, Springer, New York and Berlin, 1973. MR 0335789 (49:569)
 [4]
 R. C. Gunning, Lectures on Riemann surfaces; Jacobi varieties, Princeton Univ. Press, Princeton, N. J., 1972. MR 0357407 (50:9875)
 [5]
 , Lecture notes on theta functions. Parts and , Princeton University (1987) (to appear in the next edition of 'Lectures on Riemann surfaces').
 [6]
 , Some identities for Abelian integrals, Amer. J. Math. 108 (1985). MR 821313 (87h:14026)
 [7]
 D. Mumford, Tata lectures on Theta II. Prog, in Math., Birkhäuser Boston, Boston, MA, 1984. MR 742776 (86b:14017)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
14H42
Retrieve articles in all journals
with MSC:
14H42
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199210628348
PII:
S 00029939(1992)10628348
Keywords:
Riemann surface,
theta function,
crossratio,
trisecant formula
Article copyright:
© Copyright 1992
American Mathematical Society
