Fay's trisecant formula and cross-ratios

Author:
Cris Poor

Journal:
Proc. Amer. Math. Soc. **114** (1992), 667-671

MSC:
Primary 14H42

DOI:
https://doi.org/10.1090/S0002-9939-1992-1062834-8

MathSciNet review:
1062834

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This note considers Fay's trisecant formula as a relation between cross-ratio functions and thereby gives a simple proof of the trisecant formula. In this proof the expression for the cross-ratio function is lifted from the theta locus to the entire Jacobian. Variations of the formula as used by different authors are also given.

**[1]**Hershel M. Farkas,*On Fay’s tri-secant formula*, J. Analyse Math.**44**(1984/85), 205–217. MR**801294**, https://doi.org/10.1007/BF02790197**[2]**Hershel M. Farkas and Irwin Kra,*Riemann surfaces*, Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York-Berlin, 1980. MR**583745****[3]**John D. Fay,*Theta functions on Riemann surfaces*, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973. MR**0335789****[4]**R. C. Gunning,*Lectures on Riemann surfaces, Jacobi varieties*, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Mathematical Notes, No. 12. MR**0357407****[5]**-,*Lecture notes on theta functions. Parts**and*, Princeton University (1987) (to appear in the next edition of 'Lectures on Riemann surfaces').**[6]**R. C. Gunning,*Some identities for abelian integrals*, Amer. J. Math.**108**(1986), no. 1, 39–74 (1986). MR**821313**, https://doi.org/10.2307/2374468**[7]**David Mumford,*Tata lectures on theta. II*, Progress in Mathematics, vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian theta functions and differential equations; With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. MR**742776**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
14H42

Retrieve articles in all journals with MSC: 14H42

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1062834-8

Keywords:
Riemann surface,
theta function,
cross-ratio,
trisecant formula

Article copyright:
© Copyright 1992
American Mathematical Society