Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



An approximation connected with the exponential function

Authors: K. Soni and R. P. Soni
Journal: Proc. Amer. Math. Soc. 114 (1992), 909-918
MSC: Primary 41A60; Secondary 33B15
MathSciNet review: 1094506
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some recent techniques in the uniform asymptotic expansions of integrals are used to obtain an expansion for a function related to the exponential function. This function is associated with Ramanujan, Watson, Copson, and Buckholtz. The results obtained complement those given by Buckholtz.

References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards, Washington, DC, 1964. MR 0167642 (29:4914)
  • [2] N. Bleistein, Uniform asymptotic expansion of integrals with stationary point near algebraic singularity, Comm. Pure Appl. Math. 19 (1966), 353-370. MR 0204943 (34:4778)
  • [3] J. D. Buckholtz, Concerning an approximation of Copson, Proc. Amer. Math. Soc. 14 (1963), 564-568. MR 0151770 (27:1754)
  • [4] E. T. Copson, An approximation connected with $ {e^{ - x}}$, Proc. Edinburgh Math. Soc. 3 (1932-1933), 201-206.
  • [5] D. S. Jones, Asymptotic behavior of integrals, SIAM Rev. 14 (1972), 268-317. MR 0372499 (51:8706)
  • [6] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1974. MR 0435697 (55:8655)
  • [7] K. Soni and B. D. Sleeman, On uniform asymptotic expansions and associated polynomials, J. Math. Anal. Appl. 124 (1987), 561-583. MR 887010 (88e:41066)
  • [8] K. Soni and N. M. Temme, On a biorthogonal system associated with uniform asymptotic expansions, Centre for Mathematics and Computer Science, Amsterdam, Report Am-R8709.
  • [9] N. M. Temme, Special functions as approximants in uniform asymptotic expansions of integrals; A survey, Rend. Sem. Mat. Univ. Politecn. Torino, Special Issue, (1985), 289-317. MR 850038 (87i:41026)
  • [10] G. N. Watson, Approximation connected with $ {e^x}$, Proc. London Math. Soc. (2) 29 (1928-29), 293-308.
  • [11] R. Wong, On uniform asymptotic expansion of definite integrals, J. Approx. Theory 7 (1973), 76-86. MR 0340910 (49:5660)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A60, 33B15

Retrieve articles in all journals with MSC: 41A60, 33B15

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society