Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Compositions of continuous functions and connected functions


Authors: Kenneth R. Kellum and Harvey Rosen
Journal: Proc. Amer. Math. Soc. 115 (1992), 145-149
MSC: Primary 54C05
DOI: https://doi.org/10.1090/S0002-9939-1992-1073528-7
MathSciNet review: 1073528
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ f:X \to Y$ is continuous and onto and $ g:Y \to Z$ is such that $ g \circ f:X \to Z$ has a property we are interested in. For which properties of functions can we infer that $ g$ has the same property? Properties for which we can infer this include continuity and the Darboux property. Properties for which we cannot include almost continuity.


References [Enhancements On Off] (What's this?)

  • [1] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966. MR 0193606 (33:1824)
  • [2] B. D. Garrett, D. Nelms, and K. R. Kellum, Characterizations of connected real functions, Jber. Deutsch. Math.-Verein. 73 (1971), 131-137. MR 0486349 (58:6098)
  • [3] R. G Gibson and F. Roush, Connectivity functions defined on $ {I^n}$, Colloq. Math. 55 (1988), 41-44. MR 964319 (90a:54029)
  • [4] R. G. Gibson, H. Rosen, and F. Roush, Compositions and continuous restrictions of connectivity functions, Topology Proc. 13 (1988), 83-91. MR 1031971 (91b:54023)
  • [5] M. R. Hagan, Equivalence of connectivity maps and peripherally continuous transformations, Proc. Amer. Math. Soc. 17 (1966), 175-177. MR 0195063 (33:3268)
  • [6] S. K. Hildebrand and D. E. Sanderson, Connectivity functions and retracts, Fund. Math. 57 (1965), 237-245. MR 0184206 (32:1679)
  • [7] J. G Hocking and G. S. Young, Topology, Addison-Wesley, Reading, MA, 1961. MR 0125557 (23:A2857)
  • [8] F. B. Jones and E. S. Thomas, Jr., Connected $ {G_\delta }$-graphs, Duke Math. J. 33 (1966), 341-345. MR 0192477 (33:702)
  • [9] K. R. Kellum, Sums and limits of almost continuous functions, Colloq. Math. 31 (1974), 125-128. MR 0360946 (50:13393)
  • [10] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249-263. MR 0117710 (22:8485)
  • [11] G. T. Whyburn, Connectivity of peripherally continuous functions, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 1040-1041. MR 0196716 (33:4902)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C05

Retrieve articles in all journals with MSC: 54C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1073528-7
Keywords: Darboux property, connectivity function, almost continuous function
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society