Small congruences and concreteness

Author:
Magdalena Velebilová

Journal:
Proc. Amer. Math. Soc. **115** (1992), 13-18

MSC:
Primary 18A32; Secondary 18B05

MathSciNet review:
1079899

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a concrete category and a congruence on . Let be generated by a class of Pairs of -morphisms such that and are small sets. Then is concrete. Consequently, if is generated by a small set of pairs of morphisms, then is concrete.

**[1]**P. Erdös and R. Rado,*A partition calculus in set theory*, Bull. Amer. Math. Soc.**62**(1956), 427–489. MR**0081864**, 10.1090/S0002-9904-1956-10036-0**[2]**Peter J. Freyd,*Concreteness*, J. Pure Appl. Algebra**3**(1973), 171–191. MR**0322006****[3]**J. R. Isbell,*Two set-theoretical theorems in categories*, Fund. Math.**53**(1963), 43–49. MR**0156884****[4]**V. Koubek and J. Reiterman,*Factor categories of the category of sets: description and concreteness*, J. Pure Appl. Algebra**4**(1974), 71–77. MR**0340363****[5]**Luděk Kučera,*Every category is a factorization of a concrete one*, J. Pure Appl. Algebra**1**(1971), no. 4, 373–376. MR**0299548**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
18A32,
18B05

Retrieve articles in all journals with MSC: 18A32, 18B05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1079899-X

Keywords:
Concrete category,
congruence

Article copyright:
© Copyright 1992
American Mathematical Society