Small congruences and concreteness

Author:
Magdalena Velebilová

Journal:
Proc. Amer. Math. Soc. **115** (1992), 13-18

MSC:
Primary 18A32; Secondary 18B05

DOI:
https://doi.org/10.1090/S0002-9939-1992-1079899-X

MathSciNet review:
1079899

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a concrete category and a congruence on . Let be generated by a class of Pairs of -morphisms such that and are small sets. Then is concrete. Consequently, if is generated by a small set of pairs of morphisms, then is concrete.

**[1]**P. Erdös and R. Rado,*A partition calculus in set theory*, Bull. Amer. Math. Soc.**62**(1956), 427-489. MR**0081864 (18:458a)****[2]**P. J. Freyd,*Concreteness*, J. Pure Appl. Algebra**3**(1973), 171-191. MR**0322006 (48:371)****[3]**J. R. Isbell,*Two set-theoretical theorems in categories*, Fund. Math.**53**(1963), 43-49. MR**0156884 (28:127)****[4]**V. Koubek and J. Reiterman,*Factor categories of the category of sets: Description and concreteness*, J. Pure Appl. Algebra**4**(1974), 71-77. MR**0340363 (49:5118)****[5]**L. Kučera,*Every category is a factorization of a concrete one*, J. Pure Appl. Algebra**1**(1971), 373-376. MR**0299548 (45:8596)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
18A32,
18B05

Retrieve articles in all journals with MSC: 18A32, 18B05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1079899-X

Keywords:
Concrete category,
congruence

Article copyright:
© Copyright 1992
American Mathematical Society