Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A sharp estimate in an operator inequality


Author: R. McEachin
Journal: Proc. Amer. Math. Soc. 115 (1992), 161-165
MSC: Primary 47A30; Secondary 15A45, 47A55, 47B15
MathSciNet review: 1081093
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{H}$ and $ \mathcal{K}$ be Hilbert spaces, and suppose $ A \in \mathcal{B}(\mathcal{H})$ and $ B \in \mathcal{B}(\mathcal{K})$ are selfadjoint operators with $ \operatorname{dist} (\sigma (A),\sigma (B)) \geq \delta > 0$. It is known that for any $ Q \in \mathcal{B}(\mathcal{K},\mathcal{H})$ we must have $ \tfrac{\pi }{2}\vert\vert AQ - QB\vert\vert \geq \delta \vert\vert Q\vert\vert$. In this paper we give examples proving that $ \pi /2$ is sharp in this inequality.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A30, 15A45, 47A55, 47B15

Retrieve articles in all journals with MSC: 47A30, 15A45, 47A55, 47B15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1992-1081093-3
PII: S 0002-9939(1992)1081093-3
Article copyright: © Copyright 1992 American Mathematical Society