A sharp estimate in an operator inequality

Author:
R. McEachin

Journal:
Proc. Amer. Math. Soc. **115** (1992), 161-165

MSC:
Primary 47A30; Secondary 15A45, 47A55, 47B15

DOI:
https://doi.org/10.1090/S0002-9939-1992-1081093-3

MathSciNet review:
1081093

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be Hilbert spaces, and suppose and are selfadjoint operators with . It is known that for any we must have . In this paper we give examples proving that is sharp in this inequality.

**[1]**R. Bhatia,*Perturbation bounds for matrix eigenvalues*, Pitman Research Notes in Math., no. 162, Longman, Essex, 1987. MR**925418 (88k:15020)****[2]**R. Bhatia, Ch. Davis, and P. Koosis,*An extremal problem in Fourier analysis with applications to operator theory*, J. Funct. Anal.**82**(1989), 138-150. MR**976316 (91a:42006)****[3]**R. Bhatia, Ch. Davis, and A. McIntosh,*Perturbation of spectral subspaces and solution of linear operator equations*, Linear Algebra Appl.**52-53**(1983), 45-67. MR**709344 (85a:47020)****[4]**Ch. Davis and W. M. Kahan,*The rotation of eigenvectors by a perturbation*. III, SIAM J. Numer. Anal.**7**(1970), 1-46. MR**0264450 (41:9044)****[5]**R. McEachin,*Analysis of an inequality concerning perturbation of self-adjoint operators*, Doctoral disseration, Univ. of Illinois, Urbana, IL, October 1990.**[6]**B. Sz.-Nagy,*Über die Ungleichung von H. Bohr*, Math. Nachr.**9**(1953), 225-259. MR**0054765 (14:976d)****[7]**B. Sz.-Nagy,*Bohr inequality and an operator equation*, Operators in indefinite metric spaces, scattering theory, and other topics (Bucharest, 1985), pp. 321-327; Oper. Theory: Adv. Appl., vol. 24, Birkhauser, Basel and Boston, MA, 1987. MR**903084 (89a:47024)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47A30,
15A45,
47A55,
47B15

Retrieve articles in all journals with MSC: 47A30, 15A45, 47A55, 47B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1081093-3

Article copyright:
© Copyright 1992
American Mathematical Society