Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A Galois type theorem in von Neumann algebras


Author: Hisashi Choda
Journal: Proc. Amer. Math. Soc. 115 (1992), 415-417
MSC: Primary 46L55; Secondary 46L40
MathSciNet review: 1081090
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We shall give a simple proof for a Galois type theorem: Let $ \alpha $ be a dual free action of a discrete group $ {\text{G}}$ on a factor $ M$. If an automorphism $ \theta $ of $ M$ leaves the fixed point algebra $ {M^\alpha }$ pointwise invariant then there exists a $ {g_0} \in G$ with $ \theta = {\alpha _{{g_0}}}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L55, 46L40

Retrieve articles in all journals with MSC: 46L55, 46L40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1081090-8
Keywords: Galois theory, von Neumann algebra, factor, action, expectation
Article copyright: © Copyright 1992 American Mathematical Society