Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Strong-principal bimodules of nest algebras


Authors: Wei Bang Gong and Jun Zhu
Journal: Proc. Amer. Math. Soc. 115 (1992), 435-440
MSC: Primary 47D25
DOI: https://doi.org/10.1090/S0002-9939-1992-1081091-X
MathSciNet review: 1081091
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We shall show that $ B(H)$ can be represented by the strong closure of the linear span of the compounds of a fixed operator in $ B(H)$ and the rank one operators, composed only by the vectors of a certain orthonormal basis of $ H$, in a nest algebra, even, under some assumption, in the radical of a nest algebra.


References [Enhancements On Off] (What's this?)

  • [1] Xingde, Dai, Norm-principle bimodules of nest algebras, J. Funct. Anal. 90 (1990), 369-390. MR 1052339 (91f:47056)
  • [2] J. A. Erdös, Operators of finite rank in nest algebras, J. London Math. Soc. 43 (1968), 391-397. MR 0230156 (37:5721)
  • [3] D. R. Larson, Nest algebras and similarity transformations, Ann. of Math. 121 (1985), 409-427. MR 794368 (86j:47061)
  • [4] -,, Triangularity in operator algebras, Pitman Research Notes in Math., no. 192, Longman, Whiteplains, NY, pp. 121-188. MR 976845 (90b:47002)
  • [5] J. R. Ringrose, On some algebras of operators, Proc. London Math. Soc. (3) 15 (1965), 61-83. MR 0171174 (30:1405)
  • [6] Robert Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, Gottinggen and Heidelberg, 1960. MR 0119112 (22:9878)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D25

Retrieve articles in all journals with MSC: 47D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1081091-X
Keywords: Bimodule, rank-1 operator, nest algebra
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society