Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Prescribing a Ricci tensor in a conformal class of Riemannian metrics


Author: Xingwang Xu
Journal: Proc. Amer. Math. Soc. 115 (1992), 455-459
MSC: Primary 53C21; Secondary 53A30, 58G30
DOI: https://doi.org/10.1090/S0002-9939-1992-1093607-8
Corrigendum: Proc. Amer. Math. Soc. 118 (1993), null.
MathSciNet review: 1093607
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that two pointwise conformal metrics that have the same Ricci tensor must be homothetic.


References [Enhancements On Off] (What's this?)

  • [A] T. Aubin, Nonlinear analysis on manifolds, Monge-Ampère equations, Springer-Verlag, Berlin, Heidelberg, and New York, 1982. MR 681859 (85j:58002)
  • [B] A. Besse, Einstein manifolds, Springer-Verlag, Berlin, Heidelberg, and New York, 1987. MR 867684 (88f:53087)
  • [C] J. Cao, On deciding which spherically symmetric $ 2$-tensors can be Ricci Tensors, preprint, 1990.
  • [D] D. DeTurck, Existence of metrics with prescribed Ricci curvature, Invent. Math. 65 (1981), 179-207. MR 636886 (83b:53019)
  • [D1] -, Metrics with prescribed Ricci curvature, Seminar on Differential Geometry (S. T. Yau, ed.), Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 525-537. MR 645758 (83e:53014)
  • [DK] D. DeTurck and N. Koiso, Uniqueness and nonexistence of metrics with prescribed Ricci curvature, Ann. Inst. H. Poincaré, Anal. Nonlinéaire 1 (1984), 351-359. MR 779873 (86i:53022)
  • [Ku] R. S. Kulkarni, Curvature and metric, Ann. of Math. (2) 91 (1970), 311-331. MR 0257932 (41:2581)
  • [SY] R. Schoen and S. T. Yau, Riemannian geometry, Chinese Science Press, Beijing, 1988. (Chinese)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C21, 53A30, 58G30

Retrieve articles in all journals with MSC: 53C21, 53A30, 58G30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1093607-8
Keywords: Ricci tensor, conformal class, sectional curvature, spherically symmetric tensor, uniqueness
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society