Generic spectral properties of measure-preserving maps and applications

Authors:
Andrés del Junco and Mariusz Lemańczyk

Journal:
Proc. Amer. Math. Soc. **115** (1992), 725-736

MSC:
Primary 28D05; Secondary 47A35

DOI:
https://doi.org/10.1090/S0002-9939-1992-1079889-7

MathSciNet review:
1079889

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the group of all automorphisms of a finite Lebesgue space equipped with the weak topology. For , let denote its maximal spectral type.

**Theorem 1.** *There is a dense* *subset* *such that, for each* *and* , *the convolutions*

*are mutually singular, provided that*( )

*is not a rearrangement of*.

Theorem 1 has the following consequence.

**Theorem 2.** *has a dense* *subset* *such that for* *the following holds: For any* *and* , *the only way that* , *or any factor thereof, can sit as a factor in* is inside the *th coordinate* *-algebra for some* *with* .

Theorem 2 has applications to the construction of certain counterexamples, in particular nondisjoint automorphisms having no common factors and weakly isomorphic automorphisms that are not isomorphic.

**[ACaS]**M. A. Akcoglu, R. V. Chacon, and T. Schwartzbauer,*Commuting transformations and mixing*, Proc. Amer. Math. Soc.**24**(1970), 637–642. MR**0254212**, https://doi.org/10.1090/S0002-9939-1970-0254212-1**[CoN]**J. R. Choksi and M. G. Nadkarni,*Baire category in spaces of measure, unitary operators and transformations*, preprint.**[Fe]**S. Ferenczi,*Systèmes localement de rang un*, Ann. Inst. H. Poincaré Probab. Statist.**20**(1984), no. 1, 35–51 (French, with English summary). MR**740249****[Fu]**Harry Furstenberg,*Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation*, Math. Systems Theory**1**(1967), 1–49. MR**0213508**, https://doi.org/10.1007/BF01692494**[HhP]**Frank Hahn and William Parry,*Some characteristic properties of dynamical systems with quasi-discrete spectra*, Math. Systems Theory**2**(1968), 179–190. MR**0230877**, https://doi.org/10.1007/BF01692514**[H]**Paul R. Halmos,*Lectures on ergodic theory*, Chelsea Publishing Co., New York, 1960. MR**0111817****[J]**Andrés del Junco,*Disjointness of measure-preserving transformations, minimal self-joinings and category*, Ergodic theory and dynamical systems, I (College Park, Md., 1979–80), Progr. Math., vol. 10, Birkhäuser, Boston, Mass., 1981, pp. 81–89. MR**633762****[JR]**A. del Junco and D. Rudolph,*On ergodic actions whose self-joinings are graphs*, Ergodic Theory Dynam. Systems**7**(1987), no. 4, 531–557. MR**922364**, https://doi.org/10.1017/S0143385700004193**[K]**A. B. Katok,*Constructions in ergodic theory*, preprint.**[L1]**Mariusz Lemańczyk,*On the weak isomorphism of strictly ergodic homeomorphisms*, Monatsh. Math.**108**(1989), no. 1, 39–46. MR**1018823**, https://doi.org/10.1007/BF01300065**[L2]**M. Lemańczyk,*Weakly isomorphic transformations that are not isomorphic*, Probab. Theory Related Fields**78**(1988), no. 4, 491–507. MR**950343**, https://doi.org/10.1007/BF00353873**[LM]**Mariusz Lemańczyk and Mieczysław K. Mentzen,*On metric properties of substitutions*, Compositio Math.**65**(1988), no. 3, 241–263. MR**932072****[N]**D. Newton,*Coalescence and spectrum of automorphisms of a Lebesgue space*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**19**(1971), 117–122. MR**0289748**, https://doi.org/10.1007/BF00536902**[O]**Donald S. Ornstein,*On the root problem in ergodic theory*, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 347–356. MR**0399415****[ORW]**Donald S. Ornstein, Daniel J. Rudolph, and Benjamin Weiss,*Equivalence of measure preserving transformations*, Mem. Amer. Math. Soc.**37**(1982), no. 262, xii+116. MR**653094**, https://doi.org/10.1090/memo/0262**[R]**Daniel J. Rudolph,*An example of a measure preserving map with minimal self-joinings, and applications*, J. Analyse Math.**35**(1979), 97–122. MR**555301**, https://doi.org/10.1007/BF02791063**[Si]**Ya. G. Sinai,*On weak isomorphism of transformations with invariant measure*, Mat. Sb.**63**(1963), 23-42, (Russian)**[St]**A. M. Stepin,*Spectral properties of generic dynamical systems*, Math. U.S.S.R. Izv.**29**, 159-192.**[T]**Jean-Paul Thouvenot,*The metrical structure of some Gaussian processes*, Proceedings of the conference on ergodic theory and related topics, II (Georgenthal, 1986) Teubner-Texte Math., vol. 94, Teubner, Leipzig, 1987, pp. 195–198. MR**931147****[V]**William A. Veech,*A criterion for a process to be prime*, Monatsh. Math.**94**(1982), no. 4, 335–341. MR**685378**, https://doi.org/10.1007/BF01667386

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28D05,
47A35

Retrieve articles in all journals with MSC: 28D05, 47A35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1079889-7

Article copyright:
© Copyright 1992
American Mathematical Society