Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on vector-valued Hardy and Paley inequalities

Author: Oscar Blasco
Journal: Proc. Amer. Math. Soc. 115 (1992), 787-790
MSC: Primary 42A45; Secondary 42B30, 46E40
MathSciNet review: 1101979
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The values of $ p$ and $ q$ for $ {L_p}({L_q})$ that satisfy the extension of Paley and Hardy inequalities for vector-valued $ {H^1}$ functions are characterized. In particular, it is shown that $ {L_2}({L_1})$ is a Paley space that fails Hardy inequality.

References [Enhancements On Off] (What's this?)

  • [BP] O. Blasco, and A. Pelczynski, Theorems of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces, Trans. Amer. Math. Soc. 323 (1991), 335-367. MR 979957 (91c:46020)
  • [Bo] J. Bourgain, Vector-valued Hausdorff-Young inequality and applications, Geometric Aspects in Functional Analysis, Israel Seminar (GAFA) 1986-87, Lecture notes in Math, vol. 1317, Springer-Verlag, pp. 239-249 Berlin, 1988. MR 950985 (89m:46069)
  • [D] P. Duren, Theory of $ {H_p}$-spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
  • [L] J. E. Littlewood, Lectures on the theory of functions, Oxford Univ. Press, London, 1944. MR 0012121 (6:261f)
  • [SW] S. J. Szarek, and T. Wolniewicz, A proof of Fefferman's theorem on multipliers, Inst. Math. Polish Acad. Sci., preprint 209, Warzawa, 1980.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A45, 42B30, 46E40

Retrieve articles in all journals with MSC: 42A45, 42B30, 46E40

Additional Information

Keywords: Vector-valued Hardy spaces, Hardy inequality, Paley inequality
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society