Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Free summands in maximal Cohen-Macaulay approximations and Eisenbud operators over hypersurface rings

Author: Alex Martsinkovsky
Journal: Proc. Amer. Math. Soc. 115 (1992), 915-921
MSC: Primary 13C14
MathSciNet review: 1086584
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Eisenbud operator of a module over a complete hypersurface ring completely determines the delta invariants of this module.

References [Enhancements On Off] (What's this?)

  • [AusB] M. Auslander and R.-O. Buchweitz, The homological theory of maximal CohenMacaulay approximations, Mém. Soc. Math. France 38 (1989), 5-37. MR 1044344 (91h:13010)
  • [BGS] R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), 165-182. MR 877011 (88d:14005)
  • [Ding] S. Ding, Cohen-Macaulay approximations over a Gotenslein local ring, Thesis, Brandeis Univ., 1990.
  • [Eis] D. Eisenbud, Homological algebra on a conplete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35-64. MR 570778 (82d:13013)
  • [Mar1] A. Martsinkovsky, Almost split sequences and Zariski differentials, Thesis, Brandeis Univ., 1987.
  • [Mar2] -, Maximal Cohen-Macaulay modules and the quasihomogeneity of isolated CohenMacaulay singularities, Proc. Amer. Math. Soc. 112 (1991), 9-18. MR 1042270 (91h:13011)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13C14

Retrieve articles in all journals with MSC: 13C14

Additional Information

Keywords: Maximal Cohen-Macaulay approximation, Eisenbud operator, delta invariant
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society