Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finite groups in which the degrees of the nonlinear irreducible characters are distinct


Authors: Yakov Berkovich, David Chillag and Marcel Herzog
Journal: Proc. Amer. Math. Soc. 115 (1992), 955-959
MSC: Primary 20C20
DOI: https://doi.org/10.1090/S0002-9939-1992-1088438-9
MathSciNet review: 1088438
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Finite groups in which all the nonlinear irreducible characters have equal degrees were described by Isaacs, Passman, and others. The purpose of this article is to consider the other extreme, namely, to characterize all finite groups in which all the nonlinear irreducible characters have distinct degrees.


References [Enhancements On Off] (What's this?)

  • [1] A. Camina, Some conditions which almost characterize Frobenius groups, Israel J. Math. 31 (1978), 153-160. MR 516251 (80a:20011)
  • [2] D. Chillag and I. D. Macdonald, Generalized Frobenius groups, Israel J. Math. 47 (1984), 111-123. MR 738162 (85h:20035)
  • [3] D. Chillag, A. Mann, and C. Scoppola, Generalized Frobenius groups. II, Israel J. Math. 62 (1988), 269-282. MR 955132 (89h:20040)
  • [4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford Univ. Press (Clarendon), Oxford and New York, 1985. MR 827219 (88g:20025)
  • [5] L. Dornhoff, Group representation theory, Part A, Marcel Dekker, New York, 1971. MR 0347959 (50:458a)
  • [6] W. Feit and G. M. Seitz, On finite rational groups and related topics, Illinois J. Math. 33 (1988), 103-131. MR 974014 (90a:20016)
  • [7] B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin, Heidelberg, and New York, 1967. MR 0224703 (37:302)
  • [8] I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976. MR 0460423 (57:417)
  • [9] D. S. Passman, Permutation groups, Benjamin, New York and Amsterdam, 1968. MR 0237627 (38:5908)
  • [10] G. M. Seitz, Finite groups having only one irreducible representation of degree greater than one, Proc. Amer. Math. Soc. 19 (1968), 459-461. MR 0222160 (36:5212)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C20

Retrieve articles in all journals with MSC: 20C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1088438-9
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society