Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A note on Krylov-Tso's parabolic inequality

Author: Luis Escauriaza
Journal: Proc. Amer. Math. Soc. 115 (1992), 1053-1056
MSC: Primary 35K20; Secondary 35B05
MathSciNet review: 1092918
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ u$ is a solution to $ \sum\nolimits_{i,j = 1}^n {{a_{ij}}(x,t){D_{ij}}u(x,t) - {D_t}u(x,t) = \phi (x)} $ on a cylinder $ {\Omega _T} = \Omega \times (0,T)$, where $ \Omega $ is a bounded open set in $ {{\mathbf{R}}^n},T > 0$, and $ u$ vanishes continuously on the parabolic boundary of $ {\Omega _T}$. Then the maximum of $ u$ on the cylinder is bounded by a constant $ C$ depending on the ellipticity of the coefficient matrix $ ({a_{ij}}(x,t))$, the diameter of $ \Omega $, and the dimension $ n$ times the $ {L^n}$ norm of $ \phi $ in $ \Omega $.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35K20, 35B05

Retrieve articles in all journals with MSC: 35K20, 35B05

Additional Information

PII: S 0002-9939(1992)1092918-X
Article copyright: © Copyright 1992 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia