A note on Krylov-Tso's parabolic inequality

Author:
Luis Escauriaza

Journal:
Proc. Amer. Math. Soc. **115** (1992), 1053-1056

MSC:
Primary 35K20; Secondary 35B05

DOI:
https://doi.org/10.1090/S0002-9939-1992-1092918-X

MathSciNet review:
1092918

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if is a solution to on a cylinder , where is a bounded open set in , and vanishes continuously on the parabolic boundary of . Then the maximum of on the cylinder is bounded by a constant depending on the ellipticity of the coefficient matrix , the diameter of , and the dimension times the norm of in .

**[1]**A. D. Aleksandrov,*Majorization of solutions of second order linear equations*, Vestnik Lenningrad Univ. Math.**21**(1966), 5-25; English transl., Amer. Math. Soc. Transl.**68**(1968), 120-143. MR**0199540 (33:7684)****[2]**I. Ya. Bakel'man,*Theory of quasilinear elliptic equations*, Siberian Math. J.**2**(1961), 179-186. MR**0126604 (23:A3900)****[3]**B. Barcelo, L. Escauriaza, and E. Fabes,*Gradient estimates at the boundary for solutions to nondivergence elliptic equations*, Contemp. Math., vol. 107, Amer. Math. Soc., Providence, R.I., 1990, pp. 1-12. MR**1066466 (91h:35068)****[4]**E. Fabes and D. Stroock,*The**integrability of Green's functions and fundamental solutions of second order elliptic and parabolic equations*, Duke Math. J.**51**(1984), 977-1016. MR**771392 (86g:35057)****[5]**Kai-Sing Tso,*On an Aleksandrov-Bakel'man type maximum principle for second order parabolic equations*, Comm. Partial Differential Equations**10**(1985), 543-553. MR**790223 (87f:35031)****[6]**N. V. Krylov,*Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation*, Siberian Math. J.**17**(1976), 226-236. MR**0420016 (54:8033)****[7]**C. Pucci,*Limitazioni per soluzioni di equaziones ellittiche*, Ann. Mat. Pura Appl.**161**(1966), 15-30. MR**0214905 (35:5752)****[8]**N. N. Ural'zeva and O. A. Ladyzhenskaya,*A survey of results on the solvability of boundary value problems for second order uniformly elliptic and parabolic quasilinear equations having unbounded singularities*, Russian Math. Surveys**41**(1986).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35K20,
35B05

Retrieve articles in all journals with MSC: 35K20, 35B05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1092918-X

Article copyright:
© Copyright 1992
American Mathematical Society