Canceling branch points on projections of surfaces in -space

Authors:
J. Scott Carter and Masahico Saito

Journal:
Proc. Amer. Math. Soc. **116** (1992), 229-237

MSC:
Primary 57Q35; Secondary 57Q45

DOI:
https://doi.org/10.1090/S0002-9939-1992-1126191-0

MathSciNet review:
1126191

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A surface embedded in -space projects to a generic map in -space that may have branch points--each contributing to the normal Euler class of the surface. The sign depends on crossing information near the branch point. A pair of oppositely signed branch points are geometrically canceled by an isotopy of the surface in -space. In particular, any orientable manifold is isotopic to one that projects without branch points. This last result was originally obtained by Giller. Our methods apply to give a proof of Whitney's theorem.

**[1]**T. F. Banchoff,*Double tangency theorems for pairs of submanifolds*, Geometry Symposium Utrecht 1980 (Looijenga, Seirsma, and Takens, eds.), Lecture Notes in Math., vol. 894, Springer-Verlag, Berlin and New York, 1981, pp. 26-48. MR**655418 (83h:53005)****[2]**-,*Normal curvature and Euler classes for polyhedral surfaces in**-space*, Proc. Amer. Math. Soc.**92**(1984), 593-596. MR**760950 (86c:57019)****[3]**-,*The normal Euler class of a polyhedral surface in**-space*, unpublished notes and letters.**[4]**T. F. Banchoff and Ockle Johnson (to appear).**[5]**S. E. Cappell and J. L. Shaneson,*An introduction to embeddings, immersions and singularities in codimension two*, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, RI, 1978. MR**520529 (80e:57013)****[6]**Cole Giller,*Towards a classical knot theory for surfaces in*, Illinois J. Math.**26**(1982), 591-631. MR**674227 (84c:57011)****[7]**Seiichi Kamada,*Non-orientable surfaces in**-space*, Osaka J. Math.**26**(1989) 367-385. MR**1017592 (91g:57022)****[8]**Dennis Roseman,*Projections of codimension two embeddings*, preprint. MR**1865719 (2002j:57042)****[9]**-*Reidemeister-type moves for surfaces in four dimensional space*, preprint.**[10]**Bruce Trace,*A general postion theorem for surfaces in**-space*, Comtemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 123-137. MR**813108 (87f:57005)****[11]**H. Whitney,*On the topology of differentiate manifolds*, Lectures in Topology (Raymond L. Wilder and William L. Ayres, eds.), Univ. of Michigan Press, Ann Arbor, 1941. MR**0005300 (3:133a)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57Q35,
57Q45

Retrieve articles in all journals with MSC: 57Q35, 57Q45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1992-1126191-0

Keywords:
Embedded surfaces in -space,
projections,
branch points,
normal Euler number

Article copyright:
© Copyright 1992
American Mathematical Society