Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Free subsemigroups of domains


Author: A. A. Klein
Journal: Proc. Amer. Math. Soc. 116 (1992), 339-341
MSC: Primary 16S36; Secondary 20M05
DOI: https://doi.org/10.1090/S0002-9939-1992-1096212-2
MathSciNet review: 1096212
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the multiplicative semigroup of the ring of polynomials in two commuting indeterminates over a noncommutative domain contains a noncommutative free subsemigroup.


References [Enhancements On Off] (What's this?)

  • [1] H. E. Bell and A. A. Klein, On the rings with Engel condition, Canad. Math. Bull. 34 (1991), 295-300. MR 1127749 (92j:16023)
  • [2] J. Z. Gonçalves, Free groups in subnormal subgroups ..., Canad. Math. Bull. 27 (1984), 365-370. MR 749646 (85k:20022)
  • [3] J. Z. Gonçalves and A. Mandel, Are there free groups in division rings?, Israel J. Math. 53 (1986), 69-80. MR 861898 (88a:16036)
  • [4] A. I. Lichtman, On subgroups of the multiplicative group of skew fields, Proc. Amer. Math. Soc. 63 (1977), 15-16. MR 0447432 (56:5744)
  • [5] L. Makar-Limanov, On free subsemigroups of skew fields, Proc. Amer. Math. Soc. 91 (1984), 189-191. MR 740167 (85j:16022)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16S36, 20M05

Retrieve articles in all journals with MSC: 16S36, 20M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1992-1096212-2
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society