Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A nonsolvable complex vector field with Hölder coefficients

Author: Howard Jacobowitz
Journal: Proc. Amer. Math. Soc. 116 (1992), 787-795
MSC: Primary 35A07
MathSciNet review: 1107922
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that the equation

$\displaystyle \frac{{\partial u}}{{\partial t}} - \alpha (\xi ,t)\frac{{\partial u}}{{\partial \xi }} = f(\xi ,\tau )$

is solvable in a neighborhood of the origin provided Im $ \alpha $ does not change sign and $ \alpha $ is at least Lipschitz smooth. An example is given where solvability fails although $ \alpha $ is of Hölder class $ \lambda $ for all $ 0 < \lambda < 1$. Further, the only solutions to

$\displaystyle \frac{{\partial u}}{{\partial t}} - \alpha (\xi ,t)\frac{{\partial u}}{{\partial \xi }} = 0$

are the constant functions.

References [Enhancements On Off] (What's this?)

  • [Ca] A. P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099. MR 0177312 (31:1575)
  • [CJS] F. Colombini, E. Jannelli, and S. Spagnolo, Non uniqueness in hyperbolic Cauchy problems, Ann. of Math. (2) 126 (1987), 495-524. MR 916717 (89e:35086)
  • [CM] R. Coiffman et Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57 (1979).
  • [Gr] V. Grusin, A certain example of a differential equation without solutions, Mat. Z. 10 (1971), 125-128; Math. Notes 10 (1971), 499-501. MR 0285793 (44:3010)
  • [Ho] J. Hounie, Local solvability of first order linear operators with Lipschitz coefficients, Duke Math. J. 62 (1991), 467-477. MR 1104533 (92d:35066)
  • [Ni] L. Nirenberg, Lectures on linear partial differential equations, Amer. Math. Soc., Providence, RI, 1973. MR 0450755 (56:9048)
  • [NT] L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation, Comm. Pure Appl. Math. 16 (1963), 331-351. MR 0163045 (29:348)
  • [St] E. Stein, Singular integrals and the differentiability properties of functions, Princeton, NJ, 1970. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35A07

Retrieve articles in all journals with MSC: 35A07

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society