Ramified primes in the field of definition for the MordellWeil group of an elliptic surface
Author:
Masato Kuwata
Journal:
Proc. Amer. Math. Soc. 116 (1992), 955959
MSC:
Primary 11G35; Secondary 14D10, 14G05, 14J27
MathSciNet review:
1116264
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be an elliptic surface defined over a number field . We consider the field in which all the sections are defined. Assuming that the invariant is nonconstant, is again a number field. We describe the primes of possible ramification of the extension in terms of the configuration of the points of bad fibers in . Aside from few possible exceptions, is unramified outside of the primes of bad reduction of and the primes for which two or more points of bad fibers become identical modulo .
 [B]
Sybilla
Beckmann, Ramified primes in the field of moduli of branched
coverings of curves, J. Algebra 125 (1989),
no. 1, 236–255. MR 1012673
(90i:11063), http://dx.doi.org/10.1016/00218693(89)903037
 [K]
Masato
Kuwata, The field of definition of the MordellWeil group of an
elliptic curve over a function field, Compositio Math.
76 (1990), no. 3, 399–406. MR 1080009
(91j:11042)
 [Mil1]
J.
S. Milne, Abelian varieties, Arithmetic geometry (Storrs,
Conn., 1984) Springer, New York, 1986, pp. 103–150. MR
861974
 [Mil2]
J.
S. Milne, Jacobian varieties, Arithmetic geometry (Storrs,
Conn., 1984) Springer, New York, 1986, pp. 167–212. MR
861976
 [Mir]
Rick
Miranda, The basic theory of elliptic surfaces, Dottorato di
Ricerca in Matematica. [Doctorate in Mathematical Research], ETS Editrice,
Pisa, 1989. MR
1078016 (92e:14032)
 [Sil]
Joseph
H. Silverman, The arithmetic of elliptic curves, Graduate
Texts in Mathematics, vol. 106, SpringerVerlag, New York, 1986. MR 817210
(87g:11070)
 [Sh1]
Tetsuji
Shioda, The Galois representation of type 𝐸₈ arising
from certain MordellWeil groups, Proc. Japan Acad. Ser. A Math. Sci.
65 (1989), no. 6, 195–197. MR 1011870
(90f:11037)
 [Sh2]
Tetsuji
Shioda, MordellWeil lattices and Galois representation. I,
Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 7,
268–271. MR 1030197
(90m:11087)
 [B]
 Sybilla Beckmann, Ramified primes in the field of moduli of branched coverings of curves, J. Algebra 125 (1989), 236255. MR 1012673 (90i:11063)
 [K]
 Masato Kuwata, The field of definition of the MordellWeil group of an elliptic curve over a function field, Compositio Math. 76 (1990), 399406. MR 1080009 (91j:11042)
 [Mil1]
 J. S. Milne, Abelian varieties, Arithmetic Geometry (G. Cornell and J. H. Silverman, eds.), SpringerVerlag, New York, 1986, pp. 103105. MR 861974
 [Mil2]
 , Jacobian varieties, Arithmetic Geometry (G. Cornell and J. H. Silverman, eds.), SpringerVerlag, New York, 1986, pp. 167212. MR 861976
 [Mir]
 Rick Miranda, The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica, Dipartimento di Matematica dell'Universita di Pisa, ETS Editrice Pisa, 1989. MR 1078016 (92e:14032)
 [Sil]
 Joseph H. Silverman, The arithmetic of elliptic curves, SpringerVerlag, New York, 1986. MR 817210 (87g:11070)
 [Sh1]
 Tetsuji Shioda, The Galois representation of type arising from certain MordellWeil groups, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), 195197. MR 1011870 (90f:11037)
 [Sh2]
 , MordellWeil lattices and Galois representation. I, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), 268271; II, ibid, 296299; III, ibid, 300303. MR 1030197 (90m:11087)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
11G35,
14D10,
14G05,
14J27
Retrieve articles in all journals
with MSC:
11G35,
14D10,
14G05,
14J27
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199211162640
PII:
S 00029939(1992)11162640
Keywords:
Elliptic surfaces
Article copyright:
© Copyright 1992 American Mathematical Society
