Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

Regular sets of sampling and interpolation for weighted Bergman spaces


Author: Kristian Seip
Journal: Proc. Amer. Math. Soc. 117 (1993), 213-220
MSC: Primary 30D50; Secondary 30E10, 46E20
MathSciNet review: 1111222
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {z_{mn}} = {a^m}(bn + i),\;a > 1,\;b > 0,\;m,\;n$ integers. For each weighted Bergman space on the upper half-plane there exists a constant $ c > 0$ such that $ \{ {z_{mn}}\} $ is a set of sampling if and only if $ b\,\ln \,a < c$ and a set of interpolation if and only if $ b\,\ln \,a > c$. When $ b\,\ln \,a = c$, $ \{ {z_{mn}}\} $ is a set of uniqueness.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30D50, 30E10, 46E20

Retrieve articles in all journals with MSC: 30D50, 30E10, 46E20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1993-1111222-5
PII: S 0002-9939(1993)1111222-5
Article copyright: © Copyright 1993 American Mathematical Society