Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Spaces whose $ n$th power is weakly infinite-dimensional but whose $ (n+1)$th power is not


Author: Elżbieta Pol
Journal: Proc. Amer. Math. Soc. 117 (1993), 871-876
MSC: Primary 54F45; Secondary 54B10
DOI: https://doi.org/10.1090/S0002-9939-1993-1148027-5
MathSciNet review: 1148027
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For every natural number $ n$ we construct a metrizable separable space $ Y$ such that $ {Y^n}$ is weakly infinite-dimensional (moreover, is a $ C$-space) but $ {Y^{n + 1}}$ is strongly infinite-dimensional.


References [Enhancements On Off] (What's this?)

  • [1] K. Alster and P. Zenor, An example concerning the preservation of the Lindelöf property in product spaces, Set-Theoretic Topology (G. M. Reed, ed.), Academic Press, New York, 1977, pp. 1-10. MR 0442884 (56:1259)
  • [2] E. van Douwen, A technique for constructing honest locally compact submetrizable examples, Topology Appl. (to appear). MR 1192308 (94e:54047)
  • [3] R. Engelking and E. Pol, Countable-dimensional spaces: A survey, Dissertationes Math. 216 (1983), 1-45. MR 722011 (85f:54075)
  • [4] D. J. Garity, Property $ C$ and closed maps, Topology Appl. 26 (1987), 125-130. MR 896868 (88e:54048)
  • [5] D. J. Garity and D. M. Rohm, Property $ C$, refinable maps and dimension raising maps, Proc. Amer. Math. Soc. 98 (1986), 336-340. MR 854043 (87i:54077)
  • [6] Y. Hattori and K. Yamada, Closed pre-images of $ C$-spaces, Math. Japon. 34 (1989), 555-561. MR 1005256 (91c:54046)
  • [7] K. Kuratowski, Topology, vols. I, II, Academic Press, New York, 1966, 1968. MR 0217751 (36:840)
  • [8] -, Applications of the Baire-category method to the problem of independent sets, Fund. Math. 81 (1974), 65-72. MR 0339092 (49:3855)
  • [9] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375-376. MR 0152985 (27:2956)
  • [10] -, Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compositio Math. 23 (1971), 199-214. MR 0287502 (44:4706)
  • [11] J. Mycielski, Almost every function is independent, Fund. Math. 81 (1973), 43-48. MR 0339091 (49:3854)
  • [12] E. Pol, A weakly infinite-dimensional space whose product with the irrationals is strongly infinite-dimensional, Proc. Amer. Math. Soc. 98 (1986), 349-352. MR 854045 (88a:54083)
  • [13] R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. Amer. Math. Soc. 82 (1981), 634-636. MR 614892 (82f:54059)
  • [14] -, A remark on $ A$-weakly infinite-dimensional spaces, Topology Appl. 13 (1982), 97-101. MR 637431 (83b:54051)
  • [15] -, Note on products of weakly infinite-dimensional spaces with Menger Property, preprint.
  • [16] T. Przymusiński, On the notion of $ n$-cardinality, Proc. Amer. Math. Soc. 69 (1978), 333-338. MR 0491191 (58:10456)
  • [17] -, Normality and paracompactness in finite and countable Cartesian products, Fund. Math. 105 (1980), 87-104. MR 561584 (80m:54010)
  • [18] D. M. Rohm, Products of infinite-dimensional spaces, Proc. Amer. Math. Soc. 108 (1990), 1019-1023. MR 946625 (90k:54051)
  • [19] -, Weakly infinite-dimensional product spaces, Proc. Amer. Math. Soc. 111 (1991), 255-260. MR 1037221 (91d:54042)
  • [20] L. R. Rubin, Noncompact hereditarily strongly infinite-dimensional spaces, Proc. Amer. Math. Soc. 79 (1980), 153-154. MR 560602 (81b:54033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F45, 54B10

Retrieve articles in all journals with MSC: 54F45, 54B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1148027-5
Keywords: Weakly infinite-dimensional, products, property $ C$
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society