Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Subadditive functions and a relaxation of the homogeneity condition of seminorms


Author: Janusz Matkowski
Journal: Proc. Amer. Math. Soc. 117 (1993), 991-1001
MSC: Primary 26A12; Secondary 39B72, 46B99
DOI: https://doi.org/10.1090/S0002-9939-1993-1113646-9
MathSciNet review: 1113646
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every locally bounded above at a point subadditive function $ f:(0,\infty ) \to \mathbb{R}$ such that $ f(rt) \leqslant rf(t),\;t > 0$, for some $ r \in (0,1)$ has to be linear. Using this we show among others that the homogeneity condition of a seminorm $ {\mathbf{p}}$ in a real linear space $ X$ can be essentially relaxed to the following condition: there exists an $ r \in (0,1)$ such that $ {\mathbf{p}}(rx) \leqslant r{\mathbf{p}}(x)$ for all $ x \in X$. A new characterization of the $ {{\mathbf{L}}^p}$-norm and one-line proofs of Minkowski's and Höder's inequalities are also given.


References [Enhancements On Off] (What's this?)

  • [1] E. Berz, Sublinear functions on $ \mathbb{R}$, Aequationes Math. 12 (1975), 200-206. MR 0387862 (52:8700)
  • [2] A. Bruckner, Minimal superadditive extensions of superadditive functions, Pacific J. Math. 10 (1960), 1155-1162. MR 0122943 (23:A275)
  • [3] E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, RI, 1957. MR 0089373 (19:664d)
  • [4] M. Kuczma, An introduction to the theory of functional equations and inequalities, Prace Nauk. Uniw. Śląsk. Katowice, vol. 489, Polish Scientific Publ., Warsaw, Krakow, and Katowice, 1985. MR 788497 (86i:39008)
  • [5] J. Matkowski, On a characterization of $ {L^p}$-norm, Ann. Polon. Math. 50 (1989), 137-144. MR 1044861 (91c:46042)
  • [6] -, Functional inequality characterizing convex functions, conjugacy and a generalization of Hölder's and Minkowski's inequalities, Aequationes Math. 40 (1990), 168-180. MR 1069792 (91i:39005)
  • [7] J. Matkowski and T. Swiątkowski, Quasi-monotonicity, subadditive bijections of $ {\mathbb{R}_ + }$ and characterization of $ {L^p}$-norm, J. Math. Anal. Appl. 154 (1991), 493-506. MR 1088646 (92g:26014)
  • [8] J. Matkowski, The converse of the Minkowski's inequality theorem and its generalization, Proc. Amer. Math. Soc. 109 (1990), 663-675, MR 1009994 (90m:39025)
  • [9] -, A generalization of Mulholland inequality (submitted).
  • [10] H. P. Mulholland, On generalizations of Minkowski's inequality in the form of a triangle inequality, Proc. London Math. Soc. (2) 51 (1950), 294-307. MR 0033865 (11:503f)
  • [11] R. A. Rosenbaum, Sub-additive functions, Duke Math. J. 17 (1950), 227-242. MR 0036796 (12:164a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A12, 39B72, 46B99

Retrieve articles in all journals with MSC: 26A12, 39B72, 46B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1113646-9
Keywords: Subadditive functions, seminorm, measure space, characterization of $ {{\mathbf{L}}^p}$-norm, Minkowski's inequality, Hölder's inequality
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society