Subadditive functions and a relaxation of the homogeneity condition of seminorms

Author:
Janusz Matkowski

Journal:
Proc. Amer. Math. Soc. **117** (1993), 991-1001

MSC:
Primary 26A12; Secondary 39B72, 46B99

DOI:
https://doi.org/10.1090/S0002-9939-1993-1113646-9

MathSciNet review:
1113646

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every locally bounded above at a point subadditive function such that , for some has to be linear. Using this we show among others that the homogeneity condition of a seminorm in a real linear space can be essentially relaxed to the following condition: there exists an such that for all . A new characterization of the -norm and one-line proofs of Minkowski's and Höder's inequalities are also given.

**[1]**E. Berz,*Sublinear functions on*, Aequationes Math.**12**(1975), 200-206. MR**0387862 (52:8700)****[2]**A. Bruckner,*Minimal superadditive extensions of superadditive functions*, Pacific J. Math.**10**(1960), 1155-1162. MR**0122943 (23:A275)****[3]**E. Hille and R. S. Phillips,*Functional analysis and semigroups*, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, RI, 1957. MR**0089373 (19:664d)****[4]**M. Kuczma,*An introduction to the theory of functional equations and inequalities*, Prace Nauk. Uniw. Śląsk. Katowice, vol. 489, Polish Scientific Publ., Warsaw, Krakow, and Katowice, 1985. MR**788497 (86i:39008)****[5]**J. Matkowski,*On a characterization of*-*norm*, Ann. Polon. Math.**50**(1989), 137-144. MR**1044861 (91c:46042)****[6]**-,*Functional inequality characterizing convex functions, conjugacy and a generalization of Hölder's and Minkowski's inequalities*, Aequationes Math.**40**(1990), 168-180. MR**1069792 (91i:39005)****[7]**J. Matkowski and T. Swiątkowski,*Quasi-monotonicity, subadditive bijections of**and characterization of*-*norm*, J. Math. Anal. Appl.**154**(1991), 493-506. MR**1088646 (92g:26014)****[8]**J. Matkowski,*The converse of the Minkowski's inequality theorem and its generalization*, Proc. Amer. Math. Soc.**109**(1990), 663-675, MR**1009994 (90m:39025)****[9]**-,*A generalization of Mulholland inequality*(submitted).**[10]**H. P. Mulholland,*On generalizations of Minkowski's inequality in the form of a triangle inequality*, Proc. London Math. Soc. (2)**51**(1950), 294-307. MR**0033865 (11:503f)****[11]**R. A. Rosenbaum,*Sub-additive functions*, Duke Math. J.**17**(1950), 227-242. MR**0036796 (12:164a)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
26A12,
39B72,
46B99

Retrieve articles in all journals with MSC: 26A12, 39B72, 46B99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1113646-9

Keywords:
Subadditive functions,
seminorm,
measure space,
characterization of -norm,
Minkowski's inequality,
Hölder's inequality

Article copyright:
© Copyright 1993
American Mathematical Society