Matrix completions, norms and Hadamard products

Author:
Roy Mathias

Journal:
Proc. Amer. Math. Soc. **117** (1993), 905-918

MSC:
Primary 15A60

DOI:
https://doi.org/10.1090/S0002-9939-1993-1116267-7

MathSciNet review:
1116267

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let (respectively, ) denote the space of complex matrices (respectively, Hermitian matrices). Let be a closed convex set. We obtain necessary and sufficient conditions for to attain the maximum in the following concave maximization problem:

Using the necessary and sufficient conditions mentioned above we give elementary and unified proofs of the following results. (a) For any

**[1]**T. Ando,*Structure of operators with numerical radius one*, Acta Sci. Math. (Szeged)**34**(1973), 11–15. MR**0318920****[2]**T. Ando and K. Okubo,*Induced norms of the Schur multiplier operator*, Linear Algebra Appl.**147**(1991), 181–199. MR**1088664**, https://doi.org/10.1016/0024-3795(91)90234-N**[3]**R. Fletcher,*Semidefinite matrix constraints in optimization*, SIAM J. Control Optim.**23**(1985), no. 4, 493–513. MR**791884**, https://doi.org/10.1137/0323032**[4]**Roger A. Horn and Charles R. Johnson,*Matrix analysis*, Cambridge University Press, Cambridge, 1985. MR**832183****[5]**Roger A. Horn and Roy Mathias,*Cauchy-Schwarz inequalities associated with positive semidefinite matrices*, Linear Algebra Appl.**142**(1990), 63–82. MR**1077974**, https://doi.org/10.1016/0024-3795(90)90256-C**[6]**Roger A. Horn and Roy Mathias,*An analog of the Cauchy-Schwarz inequality for Hadamard products and unitarily invariant norms*, SIAM J. Matrix Anal. Appl.**11**(1990), no. 4, 481–498. MR**1066153**, https://doi.org/10.1137/0611034**[7]**Olvi L. Mangasarian,*Nonlinear programming*, McGraw-Hill Book Co., New York-London-Sydney, 1969. MR**0252038****[8]**Roy Mathias,*The spectral norm of a nonnegative matrix*, Linear Algebra Appl.**139**(1990), 269–284. MR**1071714**, https://doi.org/10.1016/0024-3795(90)90403-Y**[9]**R. McEachin,*Analysis of an inequality concerning perturbation of self-adjoint operators*, Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, 1990.**[10]**Ingram Olkin and John W. Pratt,*A multivariate Tchebycheff inequality*, Ann. Math. Statist**29**(1958), 226–234. MR**0093865**, https://doi.org/10.1214/aoms/1177706720**[11]**Sing-Cheong Ong,*On the Schur multiplier norm of matrices*, Linear Algebra Appl.**56**(1984), 45–55. MR**724547**, https://doi.org/10.1016/0024-3795(84)90112-5**[12]**Michael L. Overton,*On minimizing the maximum eigenvalue of a symmetric matrix*, SIAM J. Matrix Anal. Appl.**9**(1988), no. 2, 256–268. SIAM Conference on Linear Algebra in Signals, Systems, and Control (Boston, Mass., 1986). MR**938560**, https://doi.org/10.1137/0609021**[13]**Vern I. Paulsen, Stephen C. Power, and Roger R. Smith,*Schur products and matrix completions*, J. Funct. Anal.**85**(1989), no. 1, 151–178. MR**1005860**, https://doi.org/10.1016/0022-1236(89)90050-5

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
15A60

Retrieve articles in all journals with MSC: 15A60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1116267-7

Keywords:
Positive semidefinite matrix completion,
Hadamard product,
Schur product,
numerical radius,
convex optimization

Article copyright:
© Copyright 1993
American Mathematical Society