Matrix completions, norms and Hadamard products

Author:
Roy Mathias

Journal:
Proc. Amer. Math. Soc. **117** (1993), 905-918

MSC:
Primary 15A60

DOI:
https://doi.org/10.1090/S0002-9939-1993-1116267-7

MathSciNet review:
1116267

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let (respectively, ) denote the space of complex matrices (respectively, Hermitian matrices). Let be a closed convex set. We obtain necessary and sufficient conditions for to attain the maximum in the following concave maximization problem:

Using the necessary and sufficient conditions mentioned above we give elementary and unified proofs of the following results. (a) For any

**[1]**T. Ando,*On the structure of operators with numerical radius one*, Acta Sci. Math. (Szeged)**34**(1973), 11-15. MR**0318920 (47:7466)****[2]**T. Ando and K. Okubo,*Induced norms of the Schur multiplier operator*, Linear Algebra Appl.**147**(1991), 181-199. MR**1088664 (92k:47015)****[3]**R. Fletcher,*Semidefinite matrix constraints in optimization*, SIAM J. Control Optim.**23**(1985), 493-512. MR**791884 (86m:90135)****[4]**R. A. Horn and C. R. Johnson,*Matrix analysis*, Cambridge Univ. Press, New York, 1985. MR**832183 (87e:15001)****[5]**R. A. Horn and R. Mathias,*Cauchy-Schwarz inequalities associated with positive semidefinite matrices*, Linear Algebra Appl.**142**(1990), 63-82. MR**1077974 (91k:15039)****[6]**-,*An analog of the Cauchy-Schwarz inequality for Hadamard products and unitarily invariant norms*, SIAM J. Matrix Anal. Appl.**11**(1990). MR**1066153 (91i:15027)****[7]**O. Mangasarian,*Nonlinear programming*, McGraw-Hill Ser. Systems Sci., McGraw-Hill, New York, 1969. MR**0252038 (40:5263)****[8]**R. Mathias,*The spectral norm of a nonnegative matrix*, Linear Algebra Appl.**139**(1990), 269-284. MR**1071714 (91i:15029)****[9]**R. McEachin,*Analysis of an inequality concerning perturbation of self-adjoint operators*, Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, 1990.**[10]**I. Olkin and J. Pratt,*A multivariat Tchebycheff inequality*, Ann. Math. Statist.**29**(1958), 226-234. MR**0093865 (20:385)****[11]**S-.C. Ong,*On the Schur multiplier norm of matrices*, Linear Algebra Appl.**56**(1984), 45-55. MR**724547 (85i:15044)****[12]**M. Overton,*On minimizing the maximum eigenvalue of a symmetric matrix*, SIAM J. Matrix Anal. Appl.**9**(1988), 256-268. MR**938560 (89e:65045)****[13]**V. Paulsen, S. Power, and R. Smith,*Schur product and matrix completions*, J. Funct. Anal.**85**(1989), 151-178. MR**1005860 (90j:46051)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
15A60

Retrieve articles in all journals with MSC: 15A60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1116267-7

Keywords:
Positive semidefinite matrix completion,
Hadamard product,
Schur product,
numerical radius,
convex optimization

Article copyright:
© Copyright 1993
American Mathematical Society