Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The mixed Hodge structure of the complement to an arbitrary arrangement of affine complex hyperplanes is pure


Author: B. Z. Shapiro
Journal: Proc. Amer. Math. Soc. 117 (1993), 931-933
MSC: Primary 32S35; Secondary 52B30
DOI: https://doi.org/10.1090/S0002-9939-1993-1131042-5
MathSciNet review: 1131042
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider an affine algebraic variety $ \mathcal{M} = {{\mathbf{C}}^n}\backslash \bigcup\nolimits_{i = 0}^k {{L_i}} $, where $ {L_i}$ are affine complex hyperplanes. We show that the mixed Hodge structure of $ \mathcal{M}$ is similar to that of the complex torus $ {{\mathbf{C}}^{\ast}} \times \cdots \times {{\mathbf{C}}^{\ast}}$, i.e., any element in $ {H^{\ast}}(\mathcal{M},{\mathbf{C}})$ has the Hodge type $ (i,i)$. This is another example of the similarity of the properties of complements to arrangements and affine toric varieties.


References [Enhancements On Off] (What's this?)

  • [B] E. Brieskorn, Sur les groupes de tresses, Seminaire Bourbaki, 1971-1972, Lecture Notes in Math., vol. 317, Springer-Verlag, Berlin and New York, 1973, pp. 21-44. MR 0422674 (54:10660)
  • [D] P. Deligne, Theorie de Hodge. II, III, Inst Hautes Études Sci. Publ. Math 44 (1975), 6-77. MR 0498551 (58:16653a)
  • [Du] A. Durfee, A naive guide to mixed Hodge theory, Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 313-320. MR 713069 (85b:32044)
  • [GS] P. Griffiths and W. Schmidt, Recent developments in Hodge theory, Proc. Internat. Colloq. on Discrete Subgroups and Lie Groups, Bombay, 1973, pp. 31-127. MR 0419850 (54:7868)
  • [MSh] Yu. I. Manin and V. V. Shechtman, Arrangements of hyperplanes, higher braid groups and higher Bruhat orders, Adv. Stud. Pure Math., vol. 17, North-Holland, Amsterdam, 1989, pp. 289-308. MR 1097620 (91m:32042)
  • [O] P. Orlik, Introduction to arrangements, CBMS Lecture Notes, vol. 72, Amer. Math. Soc., Providence, RI, 1989. MR 1006880 (90i:32018)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32S35, 52B30

Retrieve articles in all journals with MSC: 32S35, 52B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1131042-5
Keywords: Arrangements of hyperplanes, mixed Hodge structure
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society