Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Le Canada semi-dry

Authors: James G. Loveys and Frank O. Wagner
Journal: Proc. Amer. Math. Soc. 118 (1993), 217-221
MSC: Primary 03C60; Secondary 03C45, 20A15
MathSciNet review: 1101987
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a simple group $ G$ of finite Morley Rank acting faithfully on as divisible abelian group must be a linear group over some algebraically closed field.

References [Enhancements On Off] (What's this?)

  • [Ch] Gregory Cherlin, Groups of small Morley rank, Ann. Math. Logic 17 (1979), no. 1-2, 1–28. MR 552414, 10.1016/0003-4843(79)90019-6
  • [C] L. J. Corredor, Gruppen von Endlichem Morley Rang, Ph. D. Thesis, Bonn, 1988.
  • [Be] Ch. Berline, Superstable groups; a partial answer to conjectures of Cherlin and Zil′ber, Ann. Pure Appl. Logic 30 (1986), no. 1, 45–61. Stability in model theory (Trento, 1984). MR 831436, 10.1016/0168-0072(86)90036-9
  • [B] Steven Buechler, The geometry of weakly minimal types, J. Symbolic Logic 50 (1985), no. 4, 1044–1053 (1986). MR 820131, 10.2307/2273989
  • [H1] E. Hrushovski, Contributions to stable model theory, Ph. D. Thesis, Berkeley, 1986.
  • [H2] Ehud Hrushovski, Locally modular regular types, Classification theory (Chicago, IL, 1985) Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 132–164. MR 1033027, 10.1007/BFb0082236
  • [IO] Sergei V. Ivanov and Alexander Yu. Ol′shanskii, Some applications of graded diagrams in combinatorial group theory, Groups—St. Andrews 1989, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 160, Cambridge Univ. Press, Cambridge, 1991, pp. 258–308. MR 1123985, 10.1017/CBO9780511661846.004
  • [P1] Bruno Poizat, Groupes stables, Nur al-Mantiq wal-Maʾrifah [Light of Logic and Knowledge], 2, Bruno Poizat, Lyon, 1987 (French). Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic]. MR 902156
  • [P2] -, À propos groupes stables, Logic Colloquium '85 (The Paris Logic Group, ed.), North Holland, Amsterdam, 1987, pp. 245-265.
  • [Re] Joachim Reineke, Minimale Gruppen, Z. Math. Logik Grundlagen Math. 21 (1975), no. 4, 357–359 (German). MR 0379179

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03C60, 03C45, 20A15

Retrieve articles in all journals with MSC: 03C60, 03C45, 20A15

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society