A strengthening of Leth and Malitz's uniqueness condition for sequences

Authors:
M. A. Khamsi and J. E. Nymann

Journal:
Proc. Amer. Math. Soc. **118** (1993), 233-238

MSC:
Primary 40A05

DOI:
https://doi.org/10.1090/S0002-9939-1993-1123656-3

MathSciNet review:
1123656

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A series of nonnegative real numbers is determined up to a constant multiple by the comparisons of its subsums, provided that and decreases to 0. This characterization is an improvement of Leth and Malitz's results.

**[1]**E. Bolker,*Functions resembling quotients of measures*, Trans. Amer. Math. Soc.**124**(1966), 292-312. MR**0197671 (33:5834)****[2]**R. Chuaqui and J. Malitz,*Preorderings compatible with probability measures*, Trans. Amer. Math. Soc.**279**(1983), 811-824. MR**709585 (85d:60010)****[3]**J. A. Guthrie and J. E. Nymann,*The topological structure of the set of subsums of an infinite series*, Colloq. Math., vol. 55, PNW, Warsaw, 1988, pp. 129-133. MR**978930 (90b:40010)****[4]**S. Leth,*A uniqueness condition for sequences*, Proc. Amer. Math. Soc.**93**(1985), 287-290. MR**770538 (86b:26027)****[5]**J. Malitz,*A strengthening of Leth's uniqueness condition for sequences*, Proc. Amer. Math. Soc.**98**(1986), 641-642. MR**861767 (87m:40009)****[6]**J. E. Nymann,*A uniqueness condition for finite measures*, Proc. Amer. Math. Soc.**108**(1990), 913-919. MR**1000164 (90g:28004)****[7]**H. L. Royden,*Real analysis*, 2nd ed., Macmillan, New York, 1968. MR**0151555 (27:1540)****[8]**C. Villegas,*On qualitative probability*-*algebras*, Ann. Math. Statist.**35**(1964), 1787-1796. MR**0167588 (29:4860)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
40A05

Retrieve articles in all journals with MSC: 40A05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1123656-3

Article copyright:
© Copyright 1993
American Mathematical Society