Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Hasse norm principle for elementary abelian extensions


Author: Mitsuko Horie
Journal: Proc. Amer. Math. Soc. 118 (1993), 47-56
MSC: Primary 11R20; Secondary 11R32, 11R37
DOI: https://doi.org/10.1090/S0002-9939-1993-1139477-1
MathSciNet review: 1139477
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K/k$ be an elementary abelian extension of finite algebraic number fields. The Hasse norm principle for $ K/k$ and its relation to the Hasse norm principles for all proper subextensions of $ K/k$ will be discussed. The central class field of $ K/k$ with $ k = \mathbb{Q}$ will also be studied.


References [Enhancements On Off] (What's this?)

  • [1] D. A. Garbanati, The Hasse norm theorem for non-cyclic extensions of the rationals, Proc. London Math. Soc. (3) 37 (1978), 143-164. MR 0491599 (58:10822)
  • [2] F. Gerth, The Hasse norm principle for abelian extensions of number fields, Bull. Amer. Math. Soc. 83 (1977), 264-266. MR 0422200 (54:10192)
  • [3] H. Hasse, Beweis eines Satzes und Wiederlung einer Vermutung über das allgemeine Normenrestsymbol, Nachr. Ges. Wiss. Göttingen (1931), 64-69.
  • [4] M. Horie, On central extensions of elementary abelian fields, J. Number Theory 36 (1990), 95-107. MR 1068676 (91k:11105)
  • [5] -, The Hasse principle for elementary abelian fields, Mem. Fac. Sci. Kyushu Univ. Ser. A 45 (1991), 41-54. MR 1101763 (92c:11128)
  • [6] M. J. Razar, Central and genus fields and the Hasse norm theorem, Compositio Math. 35 (1977), 281-298. MR 0466073 (57:5956)
  • [7] J. Tate, Global class field theory, Algebraic Number Theory (J. W. Cassels and A. Fröhlich, eds.), Academic Press, London and New York, 1967. MR 0220697 (36:3749)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11R20, 11R32, 11R37

Retrieve articles in all journals with MSC: 11R20, 11R32, 11R37


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1139477-1
Keywords: Hasse norm principle, central extension
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society