Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On generalized maximal functions


Author: Bernd S. W. Schröder
Journal: Proc. Amer. Math. Soc. 118 (1993), 619-625
MSC: Primary 60G46; Secondary 42A61, 60H05
MathSciNet review: 1158009
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the question of under what circumstances the quantity $ \vert\vert{\sup _{t < \infty ,\,a \in \mathbb{R}}}\vert\int_0^t f (a,{M_s})\,d{M_s}\vert\;\vert{\vert _p}$ is comparable to $ \vert\vert M_\infty ^{\ast}\vert{\vert _p}$, where $ {M_t}$ is a continuous martingale and $ f$ is a bounded Borel-measurable function.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G46, 42A61, 60H05

Retrieve articles in all journals with MSC: 60G46, 42A61, 60H05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1993-1158009-5
PII: S 0002-9939(1993)1158009-5
Keywords: Martingale, local time, maximal function
Article copyright: © Copyright 1993 American Mathematical Society