Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A simple formula for cyclic duality

Author: A. D. Elmendorf
Journal: Proc. Amer. Math. Soc. 118 (1993), 709-711
MSC: Primary 19D55; Secondary 18G60
MathSciNet review: 1143017
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a simple formula for duality in an easily described covering category of the cyclic category and show that the formula given descends to the cyclic category.

References [Enhancements On Off] (What's this?)

  • [1] A. Connes, Cohomologie cyclique et foncteurs $ {\operatorname{Ext} ^n}$, C. R. Acad. Sci Paris 296 (1983), 953-958. MR 777584 (86d:18007)
  • [2] W. G. Dwyer, M. J. Hopkins, and D. M. Kan, The homotopy theory of cyclic sets, Trans. Amer. Math. Soc. 291 (1985), 281-289. MR 797060 (86m:55014)
  • [3] W. G. Dwyer and D. M. Kan, Normalizing the cyclic modules of Connes, Comment. Math. Helv. 60 (1985), 582-600. MR 826872 (88d:18009)
  • [4] T. G. Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985), 187-215. MR 793184 (87c:18009)
  • [5] J. D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403-423. MR 870737 (88f:18016)
  • [6] J.-L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), 565-591. MR 780077 (86i:17003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 19D55, 18G60

Retrieve articles in all journals with MSC: 19D55, 18G60

Additional Information

Keywords: Cyclic category, cyclic duality
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society