Asymptotic behaviour of measure-valued critical branching processes

Author:
Alison M. Etheridge

Journal:
Proc. Amer. Math. Soc. **118** (1993), 1251-1261

MSC:
Primary 60J80; Secondary 60G57, 60J60

MathSciNet review:
1100650

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Measure-valued branching processes can be characterized in terms of the Laplace transform of their transition densities and this gives rise to a second order nonlinear p.d.e.--the evolution equation of the process. We write the solution to this evolution equation as a series, each of whose coefficients is expressed in terms of the linear semigroup corresponding to the spatial part of the measure-valued process. From this we obtain a simple proof that if the spatial part of the process is a recurrent (resp., transient) Markov process on a standard Borel space and the initial value of the process is an invariant measure of this spatial process, then the process has no (resp., has a unique) nontrivial limiting distribution.

**[1]**E. A. Carlen, S. Kusuoka, and D. W. Stroock,*Upper bounds for symmetric Markov transition functions*, Ann. Inst. H. Poincaré Probab. Statist.**23**(1987), no. 2, suppl., 245–287 (English, with French summary). MR**898496****[2]**D. A. Dawson,*Stochastic evolution equations and related measure processes*, J. Multivariate Anal.**5**(1975), 1–52. MR**0388539****[3]**D. A. Dawson,*The critical measure diffusion process*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**40**(1977), no. 2, 125–145. MR**0478374****[4]**E. B. Dynkin,*Superprocesses and their linear additive functionals*, Trans. Amer. Math. Soc.**314**(1989), no. 1, 255–282. MR**930086**, 10.1090/S0002-9947-1989-0930086-7**[5]**E. B. Dynkin,*Three classes of infinite-dimensional diffusions*, J. Funct. Anal.**86**(1989), no. 1, 75–110. MR**1013934**, 10.1016/0022-1236(89)90065-7**[6]**E. B. Dynkin,*Regular transition functions and regular superprocesses*, Trans. Amer. Math. Soc.**316**(1989), no. 2, 623–634. MR**951884**, 10.1090/S0002-9947-1989-0951884-X**[7]**Stewart N. Ethier and Thomas G. Kurtz,*Markov processes*, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. Characterization and convergence. MR**838085****[8]**A. M. Etheridge,*Asymptotic behaviour of some measure-valued diffusions*, Oxford Ph.D. thesis, 1989.**[9]**-,*Measure-valued critical branching diffusion processes with immigration*, unpublished manuscript.**[10]**William Feller,*Diffusion processes in genetics*, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, pp. 227–246. MR**0046022****[11]**William Feller,*An introduction to probability theory and its applications. Vol. II*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0210154****[12]**I. Iscoe,*A weighted occupation time for a class of measure-valued branching processes*, Probab. Theory Relat. Fields**71**(1986), no. 1, 85–116. MR**814663**, 10.1007/BF00366274**[13]**Olav Kallenberg,*Stability of critical cluster fields*, Math. Nachr.**77**(1977), 7–43. MR**0443078****[14]**Shinzo Watanabe,*A limit theorem of branching processes and continuous state branching processes*, J. Math. Kyoto Univ.**8**(1968), 141–167. MR**0237008****[15]**E. Wild,*On Boltzmann’s equation in the kinetic theory of gases*, Proc. Cambridge Philos. Soc.**47**(1951), 602–609. MR**0042999**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
60J80,
60G57,
60J60

Retrieve articles in all journals with MSC: 60J80, 60G57, 60J60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1100650-X

Keywords:
Measure-valued diffusions,
critical branching process,
diffusion approximation,
asymptotic distribution

Article copyright:
© Copyright 1993
American Mathematical Society