Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Boundedness of the Riesz potential on a complete manifold with nonnegative Ricci curvature


Author: Jiayu Li
Journal: Proc. Amer. Math. Soc. 118 (1993), 1075-1077
MSC: Primary 58G11; Secondary 43A22, 53C21
DOI: https://doi.org/10.1090/S0002-9939-1993-1185268-5
MathSciNet review: 1185268
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain a necessary and sufficient condition for the boundedness of the Riesz potential on a complete manifold with nonnegative Ricci curvature.


References [Enhancements On Off] (What's this?)

  • [1] J. Li, Gradient estimate for the heat kernel of a complete manifold and its applications, J. Funct. Anal. 97 (1991), 293-310. MR 1111183 (92f:58174)
  • [2] P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201. MR 834612 (87f:58156)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G11, 43A22, 53C21

Retrieve articles in all journals with MSC: 58G11, 43A22, 53C21


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1185268-5
Keywords: Riemannian manifold, Riesz potential, heat kernel
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society