Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Existence of a nontrivial solution to a strongly indefinite semilinear equation


Authors: B. Buffoni, L. Jeanjean and C. A. Stuart
Journal: Proc. Amer. Math. Soc. 119 (1993), 179-186
MSC: Primary 35J60; Secondary 35Q99, 45K05, 47H15, 47N20
DOI: https://doi.org/10.1090/S0002-9939-1993-1145940-X
MathSciNet review: 1145940
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Under general hypotheses, we prove the existence of a nontrivial solution for the equation $ Lu = N(u)$, where $ u$ belongs to a Hilbert space $ H$, $ L$ is an invertible continuous selfadjoint operator, and $ N$ is superlinear. We are particularly interested in the case where $ L$ is strongly indefinite and $ N$ is not compact. We apply the result to the Choquard-Pekar equation

$\displaystyle - \Delta u(x) + p(x)u(x) = u(x)\int_{{\mathbb{R}^3}} {\frac{{{u^2}(y)}} {{\vert x - y\vert}}dy,\qquad u \in {H^1}({\mathbb{R}^3}),\quad u \ne 0,} $

where $ p \in {L^\infty }({\mathbb{R}^3})$ is a periodic function.

References [Enhancements On Off] (What's this?)

  • [1] S. Alama and Yan Yan Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations 96 (1992), 89-115. MR 1153310 (93d:47135)
  • [2] H. Brezis and L. Nirenberg, Remarks on finding critical point, Comm. Pure Appl. Math. 44 (1991), 939-963. MR 1127041 (92i:58032)
  • [3] B. Buffoni and L. Jeanjean, Minimax characterization of solutions for a semilinear elliptic equation with lack of compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear). MR 1246458 (94m:35099)
  • [4] -, Bifurcation from the spectrum towards regular value, preprint.
  • [5] H. P. Heinz, Lacunary bifurcation for operator equations and nonlinear boundary value problems on $ {\mathbb{R}^N}$, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 237-270. MR 1121666 (92j:47121)
  • [6] -, Existence and gap-bifurcation of multiple solutions to certain nonlinear eigenvalue problems finalinfo preprint.
  • [7] H. P. Heinz, T. Kupper, and C. A. Stuart, Existence and bifurcation of solutions for nonlinear perturbations of the periodic Schrödinger equation, J. Differential Equations (to appear). MR 1194814 (93k:35029)
  • [8] H. P. Heinz and C. A. Stuart, Solvability of nonlinear equation in spectral gaps of the linearization, Nonlinear Anal. T.M.A. (to appear). MR 1174464 (93g:47078)
  • [9] T. Kupper and C. A. Stuart, Bifurcation into gaps in the essential spectrum, J. Reine Angew. Math. 409 (1990), 1-34. MR 1061517 (91f:47090)
  • [10] -, Bifurcation into gaps in the essential spectrum, 2, Nonlinear Anal. T.M.A. (to appear).
  • [11] -, Gap-bifurcation for nonlinear perturbations of Hill's equation, J. Reine Angew. Math. 410 (1990), 23-52. MR 1068798 (92c:47076)
  • [12] P. L. Lions, The concentration-compactness principle in the calculus of variations, Part 1, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145. MR 778970 (87e:49035a)
  • [13] -, The concentration-compactness principle in the calculus of variations, Part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223-283. MR 778974 (87e:49035b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J60, 35Q99, 45K05, 47H15, 47N20

Retrieve articles in all journals with MSC: 35J60, 35Q99, 45K05, 47H15, 47N20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1145940-X
Keywords: Semilinear equation, Choquard-Pekar equation, strongly indefinite operator, lack of compactness
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society