Weakly continuous functions on Banach spaces not containing

Author:
Joaquín M. Gutiérrez

Journal:
Proc. Amer. Math. Soc. **119** (1993), 147-152

MSC:
Primary 46B20; Secondary 46G99

MathSciNet review:
1158000

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Banach spaces not containing are characterized in terms of continuous and holomorphic functions and polynomials which are weakly sequentially continuous and weakly continuous on bounded subsets. An application to (bounded linear) operators is also given.

**[1]**Richard M. Aron,*Weakly uniformly continuous and weakly sequentially continuous entire functions*, Advances in holomorphy (Proc. Sem. Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977) North-Holland, Amsterdam, 1979, pp. 47–66. North-Holland Math. Studies, 34. MR**0632031****[2]**R. M. Aron, B. J. Cole, and T. W. Gamelin,*Spectra of algebras of analytic functions on a Banach space*, J. Reine Angew. Math.**415**(1991), 51–93. MR**1096902****[3]**R. M. Aron, J. Diestel, and A. K. Rajappa,*Weakly continuous functions on Banach spaces containing 𝑙₁*, Banach spaces (Columbia, Mo., 1984) Lecture Notes in Math., vol. 1166, Springer, Berlin, 1985, pp. 1–3. MR**827751**, 10.1007/BFb0074685**[4]**Richard M. Aron and Carlos Hervés,*Weakly sequentially continuous analytic functions on a Banach space*, Functional analysis, holomorphy and approximation theory, II (Rio de Janeiro, 1981) North-Holland Math. Stud., vol. 86, North-Holland, Amsterdam, 1984, pp. 23–38. MR**771320**, 10.1016/S0304-0208(08)70820-X**[5]**R. M. Aron, C. Hervés, and M. Valdivia,*Weakly continuous mappings on Banach spaces*, J. Funct. Anal.**52**(1983), no. 2, 189–204. MR**707203**, 10.1016/0022-1236(83)90081-2**[6]**R. M. Aron and J. B. Prolla,*Polynomial approximation of differentiable functions on Banach spaces*, J. Reine Angew. Math.**313**(1980), 195–216. MR**552473**, 10.1515/crll.1980.313.195**[7]**Elizabeth M. Bator, Paul Lewis, and David Race,*Some connections between Pettis integration and operator theory*, Rocky Mountain J. Math.**17**(1987), no. 4, 683–695. MR**923739**, 10.1216/RMJ-1987-17-4-683**[8]**Joseph Diestel,*Sequences and series in Banach spaces*, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR**737004****[9]**J. Ferrera, J. Gómez Gil, and J. G. Llavona,*On completion of spaces of weakly continuous functions*, Bull. London Math. Soc.**15**(1983), no. 3, 260–264. MR**697129**, 10.1112/blms/15.3.260**[10]**M. González and J. M. Gutiérrez,*The compact weak topology on a Banach space*, Proc. Roy. Soc. Edinburgh Sect. A**120**(1992), 367-379.**[11]**J. G. Llavona and J. A. Jaramillo,*Homomorphisms between algebras of continuous functions*, Canad. J. Math.**41**(1989), no. 1, 132–162. MR**996722**, 10.4153/CJM-1989-007-8**[12]**Joram Lindenstrauss and Lior Tzafriri,*Classical Banach spaces. I*, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR**0500056****[13]**José G. Llavona,*Approximation of continuously differentiable functions*, North-Holland Mathematics Studies, vol. 130, North-Holland Publishing Co., Amsterdam, 1986. Notas de Matemática [Mathematical Notes], 112. MR**870155****[14]**Jorge Mujica,*Complex analysis in Banach spaces*, North-Holland Mathematics Studies, vol. 120, North-Holland Publishing Co., Amsterdam, 1986. Holomorphic functions and domains of holomorphy in finite and infinite dimensions; Notas de Matemática [Mathematical Notes], 107. MR**842435****[15]**Haskell P. Rosenthal,*Point-wise compact subsets of the first Baire class*, Amer. J. Math.**99**(1977), no. 2, 362–378. MR**0438113**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B20,
46G99

Retrieve articles in all journals with MSC: 46B20, 46G99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1158000-9

Keywords:
Space not containing ,
polynomial,
holomorphic function,
weakly sequentially continuous function

Article copyright:
© Copyright 1993
American Mathematical Society