Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weakly continuous functions on Banach spaces not containing $ l\sb 1$


Author: Joaquín M. Gutiérrez
Journal: Proc. Amer. Math. Soc. 119 (1993), 147-152
MSC: Primary 46B20; Secondary 46G99
DOI: https://doi.org/10.1090/S0002-9939-1993-1158000-9
MathSciNet review: 1158000
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Banach spaces not containing $ {l_1}$ are characterized in terms of continuous and holomorphic functions and polynomials which are weakly sequentially continuous and weakly continuous on bounded subsets. An application to (bounded linear) operators is also given.


References [Enhancements On Off] (What's this?)

  • [1] R. M. Aron, Weakly uniformly continuous and weakly sequentially continuous entire functions, Advances in Holomorphy, Math. Studies, vol. 34, North-Holland, Amsterdam, 1979, pp. 47-66. MR 0632031 (58:30210)
  • [2] R. M. Aron, B. J. Cole, and T. W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93. MR 1096902 (92f:46056)
  • [3] R. M. Aron, J. Diestel, and A. K. Rajappa, Weakly continuous functions on Banach spaces containing $ {l_1}$, Banach Spaces (Proceedings, Missouri 1984), Lecture Notes in Math., vol. 1166, Springer-Verlag, Berlin, 1985, pp. 1-3. MR 827751 (87g:46022)
  • [4] R. M. Aron and C. Hervés, Weakly sequentially continuous analytic functions on a Banach space, Functional Analysis, Holomorphy and Approximation Theory II, Math. Studies, vol. 86, North-Holland, Amsterdam, 1984, pp. 23-38. MR 771320 (86k:46072)
  • [5] R. M. Aron, C. Hervés, and M. Valdivia, Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983), 189-204. MR 707203 (84g:46066)
  • [6] R. M. Aron and J. B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195-216. MR 552473 (81c:41078)
  • [7] E. M. Bator, P. Lewis, and D. Race, Some connections between Pettis integration and operator theory, Rocky Mountain J. Math. 17 (1987), 683-695. MR 923739 (89b:46060)
  • [8] J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Math., vol. 92, Springer-Verlag, Berlin, 1984. MR 737004 (85i:46020)
  • [9] J. Ferrera, J. Gómez, and J. G. Llavona, On completion of spaces of weakly continuous functions, Bull. London Math. Soc. 15 (1983), 260-264. MR 697129 (84g:46050)
  • [10] M. González and J. M. Gutiérrez, The compact weak topology on a Banach space, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 367-379.
  • [11] J. A. Jaramillo and J. G. Llavona, Homomorphisms between algebras of continuous functions, Canad. J. Math. 41 (1989), 132-162. MR 996722 (91h:46095)
  • [12] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, I. Sequence spaces, Ergeb. Math. Grenzgeb. (3), vol. 92, Springer-Verlag, Berlin, 1977. MR 0500056 (58:17766)
  • [13] J. G. Llavona, Approximation of continuously differentiable functions, Math. Studies, vol. 130, North-Holland, Amsterdam, 1986. MR 870155 (88f:41001)
  • [14] J. Mujica, Complex analysis in Banach spaces, Math. Studies, vol. 120, North-Holland, Amsterdam, 1986. MR 842435 (88d:46084)
  • [15] H. P. Rosenthal, Point-wise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), 362-378. MR 0438113 (55:11032)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 46G99

Retrieve articles in all journals with MSC: 46B20, 46G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1158000-9
Keywords: Space not containing $ {l_1}$, polynomial, holomorphic function, weakly sequentially continuous function
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society