Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On the spectrum of the Neumann Laplacian of long-range horns: a note on the Davies-Simon theorem


Author: V. Jakšić
Journal: Proc. Amer. Math. Soc. 119 (1993), 663-669
MSC: Primary 35P05; Secondary 35P25, 47A10, 47F05
MathSciNet review: 1155600
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a class of regions with cusps (e.g., $ \Omega = \{ (x,y):x > 1,\vert y\vert < \exp ( - {x^\alpha })\} ,\;0 < \alpha < 1)$) we show that $ {\sigma _{\operatorname{ac} }}( - \Delta _N^\Omega ) = [0,\infty )$ of uniform multiplicity one, $ {\sigma _{\operatorname{sing} }}( - \Delta _N^\Omega ) = \emptyset $, and $ {\sigma _{\operatorname{pp} }}( - \Delta _N^\Omega )$ consists of a discrete set of embedded eigenvalues of finite multiplicity.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35P05, 35P25, 47A10, 47F05

Retrieve articles in all journals with MSC: 35P05, 35P25, 47A10, 47F05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1993-1155600-7
PII: S 0002-9939(1993)1155600-7
Article copyright: © Copyright 1993 American Mathematical Society