Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The $ 2$-character table does not determine a group

Authors: Kenneth W. Johnson and Surinder K. Sehgal
Journal: Proc. Amer. Math. Soc. 119 (1993), 1021-1027
MSC: Primary 20C15
MathSciNet review: 1166358
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Frobenius had defined the group determinant of a group $ G$ which is a polynomial in $ n = \vert G\vert$ variables. Formanek and Sibley have shown that the group determinant determines the group. Hoehnke and Johnson show that the $ 3$-characters (a part of the group determinant) determine the group. In this paper it is shown that the $ 2$-characters do not determine the group. If we start with a group $ G$ of a certain type then a group $ H$ with the same $ 2$-character table must form a Brauer pair with $ G$. A complete description of such an $ H$ is available in Comm. Algebra 9 (1981), 627-640.

References [Enhancements On Off] (What's this?)

  • [1] R. Brauer, Representations of finite groups, Lectures in Modern Mathematics (T. L. Saaty, ed.), vol. 1, Wiley, New York, 1963, pp. 133-175. MR 0178056 (31:2314)
  • [2] G. Cliff and S. Sehgal, On groups having the same character tables, Comm. Algebra 9 (1981), 627-640. MR 608509 (82f:20023)
  • [3] G. Frobenius, Über die Primfaktoren der Gruppendeterminante, Sber. Akad. Wiss. Berlin (1896), 1343-1382.
  • [4] E. Formanek and D. Sibley, The group determinant determines the group, Proc. Amer. Math. Soc. 112 (1991), 649-656. MR 1062831 (91j:20021)
  • [5] H. J. Hoehnke and K. W. Johnson, The $ 3$-characters are sufficient for the group determinant, Proc. Ring Theory Conference (Barnaul, Siberia), 1991 (to appear). MR 1332286 (96c:20018)
  • [6] B. Huppert, Zweifach transitive, auflosbäre Permutationgruppen, Math. Z. 68 (1957), 126-150. MR 0094386 (20:904)
  • [7] K. W. Johnson, Latin square determinants, Algebraic, Extremal and Metric Combinatorics 1986, London Math. Soc. Lecture Notes Ser., vol. 131, Cambridge Univ. Press, London and New York, 1988, pp. 146-154. MR 1052664 (91h:05026)
  • [8] -, On the group determinant, Math. Proc. Cambridge Philos. Soc. 109 (1991), 299-311. MR 1085397 (91j:20022)
  • [9] R. Mansfield, A group determinant determines its group, preprint. MR 1123661 (93b:20018)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C15

Retrieve articles in all journals with MSC: 20C15

Additional Information

Keywords: Group determinant, character table, Brauer pairs
Article copyright: © Copyright 1993 American Mathematical Society