Generating ideals up to projective equivalence

Author:
D. Katz

Journal:
Proc. Amer. Math. Soc. **120** (1994), 79-83

MSC:
Primary 13E15; Secondary 13C15

MathSciNet review:
1176070

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that every ideal in a commutative Noetherian ring of dimension is projectively equivalent to an ideal having generators.

**[1]**H. Boratynski,*Generating ideals up to radical*, Arch. Math.**33**(1979), 423-425. MR**567361 (82a:13004)****[2]**D. Eisenbud and E. G. Evans, Jr.,*Every algebraic set in*-*space is the intersection of**hypersurfaces*, Invent. Math.**19**(1973), 107-112. MR**0327783 (48:6125)****[3]**N. Mohan Kumar,*On two conjectures about polynomial rings*, Invent. Math.**40**(1978), 225-236. MR**499785 (80c:13010)****[4]**E. Kunz,*Introduction to commutative algebra and algebraic geometry*, Birkhäuser, Boston, MA, 1985. MR**789602 (86e:14001)****[5]**G. Lyubesnik,*A property of ideals in polynomial rings*, Proc. Amer. Math. Soc.**98**(1986), 399-400. MR**857929 (87k:13010)****[6]**S. McAdam,*Finite covering by ideals*, Ring Theory (Proceedings of the Oklahoma Conference), Lecture Notes in Pure and Appl. Math., vol. 7, Marcel Dekker, New York, 1974, pp. 163-171. MR**0332749 (48:11075)****[7]**-,*Asymptotic prime divisor*, Lectures Notes in Math., vol. 1023, Springer, Berlin, 1983. MR**722609 (85f:13018)****[8]**D. G. Northcott and D. Rees,*Reductions of ideals in local rings*, Math. Proc. Cambridge Philos. Soc.**50**(1954), 145-158. MR**0059889 (15:596a)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
13E15,
13C15

Retrieve articles in all journals with MSC: 13E15, 13C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1176070-X

Keywords:
Projectively equivalent ideals

Article copyright:
© Copyright 1994
American Mathematical Society