A note on liftings of linear continuous functionals

Author:
Horst Osswald

Journal:
Proc. Amer. Math. Soc. **120** (1994), 453-456

MSC:
Primary 03H05; Secondary 28E05, 46S20

MathSciNet review:
1165064

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for each bounded Loeb space a functional has a lifting if and only if . If , then every has a lifting.

**[1]**Sergio Albeverio, Raphael Høegh-Krohn, Jens Erik Fenstad, and Tom Lindstrøm,*Nonstandard methods in stochastic analysis and mathematical physics*, Pure and Applied Mathematics, vol. 122, Academic Press, Inc., Orlando, FL, 1986. MR**859372****[2]**R. A. Anderson,*A nonstandard representation of Brownian motion and Ito-integration*, Israel J. Math.**15**(1976).**[3]**Edwin Hewitt and Karl Stromberg,*Real and abstract analysis*, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing; Graduate Texts in Mathematics, No. 25. MR**0367121****[4]**Douglas N. Hoover and Edwin Perkins,*Nonstandard construction of the stochastic integral and applications to stochastic differential equations. I, II*, Trans. Amer. Math. Soc.**275**(1983), no. 1, 1–36, 37–58. MR**678335**, 10.1090/S0002-9947-1983-0678335-1**[5]**Albert E. Hurd and Peter A. Loeb,*An introduction to nonstandard real analysis*, Pure and Applied Mathematics, vol. 118, Academic Press, Inc., Orlando, FL, 1985. MR**806135****[6]**H. Jerome Keisler,*An infinitesimal approach to stochastic analysis*, Mem. Amer. Math. Soc.**48**(1984), no. 297, x+184. MR**732752**, 10.1090/memo/0297**[7]**T. L. Lindstrøm,*Hyperfinite stochastic integration*. I, II, III, and addendum, Math. Scand.**46**(1980).**[8]**Peter A. Loeb,*Conversion from nonstandard to standard measure spaces and applications in probability theory*, Trans. Amer. Math. Soc.**211**(1975), 113–122. MR**0390154**, 10.1090/S0002-9947-1975-0390154-8**[9]**Peter A. Loeb,*A functional approach to nonstandard measure theory*, Conference in modern analysis and probability (New Haven, Conn., 1982), Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 251–261. MR**737406**, 10.1090/conm/026/737406**[10]**Horst Osswald,*Vector valued Loeb measures and the Lewis integral*, Math. Scand.**68**(1991), no. 2, 247–268. MR**1129592**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
03H05,
28E05,
46S20

Retrieve articles in all journals with MSC: 03H05, 28E05, 46S20

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1994-1165064-6

Article copyright:
© Copyright 1994
American Mathematical Society