Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On varieties as hyperplane sections

Author: E. Ballico
Journal: Proc. Amer. Math. Soc. 120 (1994), 405-411
MSC: Primary 14N05; Secondary 14M10
MathSciNet review: 1172946
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Here we extend to the the singular (but locally complete intersection) case a theorem of L'vovsky giving a condition (" $ {h^0}({N_X}( - 1)) \leqslant n + 1$") forcing a variety $ X \subset {{\mathbf{P}}^n}$ not to be a hyperplane section (except of cones). Then we give a partial extension of this criterion to the case of subvarieties of a Grassmannian.

References [Enhancements On Off] (What's this?)

  • [B] E. Ballico, On singular curves in the case of positive characteristic, Math. Nachr. 141 (1989), 267-273. MR 1014431 (90h:14042)
  • [BC] E. Ballico and C. Ciliberto, Open problems, algebraic curves and projective geometry, Lecture Notes in Math., vol. 1389, Springer-Verlag, New York, 1989, pp. 276-285. MR 1023406 (90j:14001)
  • [K1] J. O. Kleppe, The Hilbert-flag scheme, its properties and its connection with the Hilbert scheme. Applications to curves in $ 3$-space, Thesis, Oslo, 1981.
  • [K2] -, Non-reduced components of the Hilbert scheme of smooth space curves, Space Curves, Lecture Notes in Math., vol. 1266, Springer-Verlag, New York, 1987, pp. 181-207. MR 908714 (89a:14010)
  • [K3] -, Liaison of families of subschemes in $ {{\mathbf{P}}^n}$, Algebraic Curves and Projective Geometry, Lecture Notes in Math., vol. 1389, Springer-Verlag, New York, 1989, pp. 128-173.
  • [La] D. Laksov, Indecomposability of restricted tangent bundles, tableaux de Young et foncteurs de Schur en algèbre et géométrie, Astérisque 87-88 (1981), 207-219. MR 646821 (83e:14040)
  • [L] S. L'vovsky, Extensions of projective varieties and deformations, preprint.
  • [P] D. Perrin, Courbes passant par $ m$ points généraux de $ {{\mathbf{P}}^3}$, Memoire 28/29 (Nouvelle série), supplement to Bull. Soc. Math. France 115 (1987).
  • [W] J. Wahl, A cohomological characterization of $ {{\mathbf{P}}^n}$, Invent. Math. 72 (1983), 315-322. MR 700774 (84h:14024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14N05, 14M10

Retrieve articles in all journals with MSC: 14N05, 14M10

Additional Information

Keywords: Hyperplane section, projective variety, normal bundle, Grassmannian, deformation theory
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society