On the relation between positive definite functions and generalized Toeplitz kernels

Author:
J. Friedrich

Journal:
Proc. Amer. Math. Soc. **120** (1994), 727-730

MSC:
Primary 42A82; Secondary 47A57, 47B35

DOI:
https://doi.org/10.1090/S0002-9939-1994-1209422-X

MathSciNet review:
1209422

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that extension problems for generalized Toeplitz kernels may be completely reduced to extension problems for positive definite functions, where the solution is well known. These considerations in particular imply that generalized Toeplitz kernels may be represented as Fourier transforms of positive operator-valued measures.

**[1]**Rodrigo Arocena,*On the extension problem for a class of translation invariant positive forms*, J. Operator Theory**21**(1989), no. 2, 323–347. MR**1023319****[2]**R. Arocena and M. Cotlar,*Dilation of generalized Toeplitz kernels and some vectorial moment and weighted problems*, Harmonic analysis (Minneapolis, Minn., 1981) Lecture Notes in Math., vol. 908, Springer, Berlin-New York, 1982, pp. 169–188. MR**654185****[3]**Rodrigo Arocena and Mischa Cotlar,*Generalized Toeplitz kernels and Adamjan-Arov-Kreĭn moment problems*, Toeplitz centennial (Tel Aviv, 1981) Operator Theory: Adv. Appl., vol. 4, Birkhäuser, Basel-Boston, Mass., 1982, pp. 37–55. MR**669900****[4]**Ramón Bruzual,*Local semigroups of contractions and some applications to Fourier representation theorems*, Integral Equations Operator Theory**10**(1987), no. 6, 780–801. MR**911991**, https://doi.org/10.1007/BF01196119**[5]**Mischa Cotlar and Cora Sadosky,*On the Helson-Szegő theorem and a related class of modified Toeplitz kernels*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 383–407. MR**545279****[6]**Jürgen Friedrich,*Integral representations of positive definite matrix-valued distributions on cylinders*, Trans. Amer. Math. Soc.**313**(1989), no. 1, 275–299. MR**992599**, https://doi.org/10.1090/S0002-9947-1989-0992599-1**[7]**M. L. Gorbachuk,*On representations of positive definite operator functions*, Ukrain. Mat. Z.**17**(1965), 29-45. (Russian)

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
42A82,
47A57,
47B35

Retrieve articles in all journals with MSC: 42A82, 47A57, 47B35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1209422-X

Article copyright:
© Copyright 1994
American Mathematical Society