Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the metrical theory of continued fractions
HTML articles powered by AMS MathViewer

by R. Nair PDF
Proc. Amer. Math. Soc. 120 (1994), 1041-1046 Request permission

Abstract:

Suppose ${b_k}$ denotes either $\phi (k)$ or $\phi ({p_k})\;(k = 1,2, \ldots )$ where the polynomial $\phi$ maps $\mathbb {N}$ to $\mathbb {N}$ and ${p_k}$ denotes the $k$th rational prime. Suppose $({c_k}(x))_{k = 1}^\infty$ denotes the sequences of partial quotients of the continued function expansion of the real number $x$. Then for certain functions $F:{\mathbb {R}_{ \geqslant 0}} \to \mathbb {R}$ we show that \[ \lim \limits _{N \to \infty } {F^{ - 1}}\left [ {\frac {{F({c_{{b_1}}}(x)) + \cdots + F({c_{{b_k}}}(x))}} {N}} \right ] = {F^{ - 1}}\left [ {\frac {1} {{(\log 2)}}\int _0^1 {\frac {{F({c_1}(x))}} {{1 + x}}dx} } \right ]\] almost everywhere with respect to Lebesgue measure. This result with ${b_k} = k$ is classical and due to Ryll-Nardzewski.
References
    A. Bellow and V. Losert, The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc. 288 (1985), 307-345. G. A. Edgar and L. Sucheston (eds.), Almost everywhere convergence, Academic Press, New York, 1989, pp. 145-151. Y. Katznelson, An introduction to harmonic analysis, Dover, New York, 1976. A. Khinchine, Metrische Kettenbruch probleme, Compositio Math. 1 (1935), 359-382. P. Lévi, Sur le dévelopment en fraction continue d’un nombre choise au hasard, Compositio Math. 3 (1936), 286-303. R. Nair, On polynomials in primes and J. Bourgain’s circle method approach to ergodic theorems. II, Studia Math. (to appear). K. Peterson, Ergodic theory, Graduate Stud. in Adv. Math., vol. 2, Cambridge Univ. Press, London and New York, 1981.
  • G. Rhin, RĂ©partition modulo $1$ de $f(p_{n})$ quand $f$ est une sĂ©rie entière, RĂ©partition modulo $1$ (Actes Colloq., Marseille-Luminy, 1974), Lecture Notes in Math., Vol. 475, Springer, Berlin, 1975, pp. 176–244 (French). MR 0392857
  • C. Ryll-Nardzewski, On the ergodic theorems. II. Ergodic theory of continued fractions, Studia Math. 12 (1951), 74–79. MR 46583, DOI 10.4064/sm-12-1-74-79
  • Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
  • Hermann Weyl, Ăśber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313–352 (German). MR 1511862, DOI 10.1007/BF01475864
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11K50, 28D05
  • Retrieve articles in all journals with MSC: 11K50, 28D05
Additional Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 120 (1994), 1041-1046
  • MSC: Primary 11K50; Secondary 28D05
  • DOI: https://doi.org/10.1090/S0002-9939-1994-1176073-5
  • MathSciNet review: 1176073