Polynomial rings over GoldieKerr commutative rings
Author:
Carl Faith
Journal:
Proc. Amer. Math. Soc. 120 (1994), 989993
MSC:
Primary 13E10; Secondary 13B25, 16P60
MathSciNet review:
1221723
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: All rings in this paper are commutative, and (resp., ) denotes the acc on annihilators (resp., on direct sums of ideals). Any subring of an ring, e.g., of a Noetherian ring, is an ring. Together, and constitute the requirement for a ring to be a Goldie ring. Moreover, a ring is Goldie iff its classical quotient ring is Goldie. A ring is a Kerr ring (the appellation is for J. Kerr, who in 1990 constructed the first Goldie rings not Kerr) iff the polynomial ring has (in which case must have ). By the Hilbert Basis theorem, if is a Noetherian ring, then so is ; hence, any subring of a Noetherian ring is Kerr. In this note, using results of Levitzki, Herstein, Small, and the author, we show that any Goldie ring such that has nil Jacobson radical (equivalently, the nil radical of is an intersection of associated prime ideals) is Kerr in a very strong sense: is Artinian and, hence, Noetherian (Theorems 1.1 and 2.2). As a corollary we prove that any Goldie ring that is algebraic over a field is Artinian, and, hence, any order in is a Kerr ring (Theorem 2.5 and Corollary 2.6). The same is true of any algebra over a field of cardinality exceeding the dimension of (Corollary 2.7). Other Kerr rings are: reduced rings and valuation rings with (see 3.3 and 3.4).
 [C]
Victor
P. Camillo, Commutative rings whose quotients are Goldie,
Glasgow Math. J. 16 (1975), no. 1, 32–33. MR 0379476
(52 #381)
 [CG]
Victor
Camillo and Robert
Guralnick, Polynomial rings over Goldie rings are
often Goldie, Proc. Amer. Math. Soc.
98 (1986), no. 4,
567–568. MR
861751 (87k:16018), http://dx.doi.org/10.1090/S00029939198608617510
 [F1]
Carl
Faith, Finitely embedded commutative
rings, Proc. Amer. Math. Soc.
112 (1991), no. 3,
657–659. MR 1057942
(91j:13012), http://dx.doi.org/10.1090/S00029939199110579420
 [F2]
, Annihilators, associated prime ideals, and KaschMcCoy quotient rings of commutative rings, Comm. Algebra 119 (1991), 18671892.
 [FP]
Carl
Faith and Poobhalan
Pillay, Classification of commutative FPF rings, Notas de
Matemática [Mathematical Notes], vol. 4, Universidad de Murcia
Secretariado de Publicaciones e Intercambio Científico, Murcia,
1990. MR
1091714 (92k:13012)
 [GM]
S.
M. Ginn and P.
B. Moss, Finitely embedded modules over
Noetherian rings, Bull. Amer. Math. Soc. 81 (1975), 709–710.
MR
0369424 (51 #5657), http://dx.doi.org/10.1090/S000299041975138316
 [HP]
Dolors
Herbera and Poobhalan
Pillay, Injective classical quotient rings of polynomial rings are
quasiFrobenius, J. Pure Appl. Algebra 86 (1993),
no. 1, 51–63. MR 1213153
(94a:16056), http://dx.doi.org/10.1016/00224049(93)90152J
 [HS]
I.
N. Herstein and L.
Small, Nil rings satisfying certain chain conditions, Canad.
J. Math. 16 (1964), 771–776. MR 0166220
(29 #3497)
 [J]
N. Jacobson, The structure of rings, Amer. Math. Soc., Providence, RI, 1956; revised ed. 1964.
 [K1]
Jeanne
Wald Kerr, The polynomial ring over a Goldie ring need not be a
Goldie ring, J. Algebra 134 (1990), no. 2,
344–352. MR 1074333
(91h:16042), http://dx.doi.org/10.1016/00218693(90)90057U
 [K2]
Jeanne
Wald Kerr, An example of a Goldie ring whose matrix ring is not
Goldie, J. Algebra 61 (1979), no. 2,
590–592. MR
559857 (81b:16016), http://dx.doi.org/10.1016/00218693(79)902977
 [La]
Joachim
Lambek, Lectures on rings and modules, 2nd ed., Chelsea
Publishing Co., New York, 1976. MR 0419493
(54 #7514)
 [Le]
J.
Levitzki, On nil subrings, Israel J. Math. 1
(1963), 215–216. MR 0163931
(29 #1230)
 [P]
C. Perelló (ed.), Pere Menal Memorial volumes, Publ. Mat. 36 (2A & 2B) (1992).
 [R]
Moshe
Roitman, On polynomial extensions of Mori domains over countable
fields, J. Pure Appl. Algebra 64 (1990), no. 3,
315–328. MR 1061306
(91i:13021), http://dx.doi.org/10.1016/00224049(90)90065P
 [S1]
Lance
W. Small, Orders in Artinian rings, J. Algebra
4 (1966), 13–41. MR 0200300
(34 #199)
 [S2]
Lance
W. Small, The embedding problem for Noetherian
rings, Bull. Amer. Math. Soc. 75 (1969), 147–148. MR 0232797
(38 #1120), http://dx.doi.org/10.1090/S00029904196912183X
 [C]
 V. Camillo, Commutative rings whose quotients are Goldie, Glasgow Math. J. 16 (1975), 3233. MR 0379476 (52:381)
 [CG]
 V. Camillo and R. Guralnick, Polynomial rings are often Goldie, Proc. Amer. Math. Soc. 98 (1986), 567568. MR 861751 (87k:16018)
 [F1]
 C. Faith, Finitely embedded commutative rings, Proc. Amer. Math. Soc. 112 (1991), 657659; Addendum 118 (1993), 331. MR 1057942 (91j:13012)
 [F2]
 , Annihilators, associated prime ideals, and KaschMcCoy quotient rings of commutative rings, Comm. Algebra 119 (1991), 18671892.
 [FP]
 C. Faith and P. Pillay, Classification of commutative rings, Notas de Matematicas, vol. 4, Murcia: Universidad, Secretario de Publicaciones, 1990. MR 1091714 (92k:13012)
 [GM]
 S. M. Ginn and P. B. Moss, Finitely embedded modules over Noetherian rings, Bull. Amer. Math. Soc. 49 (1975), 294296. MR 0369424 (51:5657)
 [HP]
 D. Herbera and P. Pillay, Injective classical quotient rings of polynomial rings are quasiFrobenius, J. Pure Appl. Algebra 86 (1993), 5163. MR 1213153 (94a:16056)
 [HS]
 I. N. Herstein and L. Small, Nil rings satisfying certain chain conditions, Canad. J. Math. 16 (1964), 771776. MR 0166220 (29:3497)
 [J]
 N. Jacobson, The structure of rings, Amer. Math. Soc., Providence, RI, 1956; revised ed. 1964.
 [K1]
 J. W. Kerr, The polynomial ring over a Goldie ring need not be a Goldie ring, J. Algebra 134 (1990), 344352. MR 1074333 (91h:16042)
 [K2]
 , An example of a Goldie ring whose matrix ring is not Goldie, J. Algebra 61 (1979), 590592. MR 559857 (81b:16016)
 [La]
 J. Lambek, Lectures on rings and modules, Chelsea, New York, 1976. MR 0419493 (54:7514)
 [Le]
 J. Levitzki, On nil subrings, Israel Math. J. 7 (1963), 215216. MR 0163931 (29:1230)
 [P]
 C. Perelló (ed.), Pere Menal Memorial volumes, Publ. Mat. 36 (2A & 2B) (1992).
 [R]
 M. Roitman, On Mori domains and commutative rings with . III, J. Pure Appl. Algebra 64 (1990), 315328. MR 1061306 (91i:13021)
 [S1]
 L. Small, Orders in Artinian rings, J. Algebra 4 (1966), 1341. MR 0200300 (34:199)
 [S2]
 , The embedding problem for Noetherian rings, Bull. Amer. Math. Soc. 75 (1969), 147148. MR 0232797 (38:1120)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
13E10,
13B25,
16P60
Retrieve articles in all journals
with MSC:
13E10,
13B25,
16P60
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199412217238
PII:
S 00029939(1994)12217238
Article copyright:
© Copyright 1994 American Mathematical Society
