Differential equations with nonlinear boundary conditions

Author:
Michal Fečkan

Journal:
Proc. Amer. Math. Soc. **121** (1994), 103-111

MSC:
Primary 47N20; Secondary 34B15, 47H15

MathSciNet review:
1233970

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper shows the existence of multiple unbounded branches of solutions for certain equations via the Nielsen fixed-point theory.

**[1]**Herbert Amann, Antonio Ambrosetti, and Giovanni Mancini,*Elliptic equations with noninvertible Fredholm linear part and bounded nonlinearities*, Math. Z.**158**(1978), no. 2, 179–194. MR**0481498****[2]**Jean Mawhin,*Stable homotopy and ordinary differential equations with nonlinear boundary conditions*, Proceedings of the Regional Conference on the Application of Topological Methods in Differential Equations (Boulder, Colo., 1976), 1977, pp. 417–424. MR**0488114****[3]**L. Nirenberg,*Topics in nonlinear functional analysis*, Courant Institute of Mathematical Sciences, New York University, New York, 1974. With a chapter by E. Zehnder; Notes by R. A. Artino; Lecture Notes, 1973–1974. MR**0488102****[4]**Michal Fečkan,*Nielsen fixed point theory and nonlinear equations*, J. Differential Equations**106**(1993), no. 2, 312–331. MR**1251856**, 10.1006/jdeq.1993.1110**[5]**Michal Fečkan,*Multiple periodic solutions of small vector fields on differentiable manifolds*, J. Differential Equations**113**(1994), no. 1, 189–200. MR**1296167**, 10.1006/jdeq.1994.1120**[6]**-,*Multiple perturbed solutions near nondegenerate manifolds*, Comment. Math. Univ. Carolin, (to appear).**[7]**Robert F. Brown,*Topological identification of multiple solutions to parametrized nonlinear equations*, Pacific J. Math.**131**(1988), no. 1, 51–69. MR**917865****[8]**Robert F. Brown,*The Lefschetz fixed point theorem*, Scott, Foresman and Co., Glenview, Ill.-London, 1971. MR**0283793****[9]**John Tavantzis,*Topological methods for finding nontrivial solutions of elliptic boundary value problems*, Nonlinear Anal.**1**(1976/77), no. 6, 633–649. MR**0602537****[10]**J. Mawhin and K. P. Rybakowski,*Continuation theorems for semilinear equations in Banach spaces: a survey*, Nonlinear analysis, World Sci. Publishing, Singapore, 1987, pp. 367–405. MR**934110****[11]**E. N. Dancer,*On the existence of zeros of perturbed operators*, Nonlinear Anal.**7**(1983), no. 7, 717–727. MR**707080**, 10.1016/0362-546X(83)90028-7

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47N20,
34B15,
47H15

Retrieve articles in all journals with MSC: 47N20, 34B15, 47H15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1994-1233970-X

Article copyright:
© Copyright 1994
American Mathematical Society