Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the similarity of centered operators to contractions


Author: Srdjan Petrović
Journal: Proc. Amer. Math. Soc. 121 (1994), 533-541
MSC: Primary 47B99; Secondary 47A45, 47A65
DOI: https://doi.org/10.1090/S0002-9939-1994-1182705-8
MathSciNet review: 1182705
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that every power-bounded operator-weighted shift with commuting normal weights is similar to a contraction. As an application of this result, we reduce the problem of whether every centered power-bounded operator is similar to a contraction to the analogous question about quasi-invertible centered operators.


References [Enhancements On Off] (What's this?)

  • [1] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790. MR 0165362 (29:2646)
  • [2] P. R. Halmos, On Foguel's answer to Nagy's question, Proc. Amer. Math. Soc. 15 (1964), 791-793. MR 0165363 (29:2647)
  • [3] -, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933. MR 0270173 (42:5066)
  • [4] J. A. R. Holbrook, Spectral dilations and polynomially bounded operators, Indiana Univ. Math. J. 20 (1971), 1027-1034. MR 0284845 (44:2069)
  • [5] A. Lebow, On von Neumann's theory of spectral sets, J. Math. Anal. Appl. 7 (1963), 64-90. MR 0156220 (27:6149)
  • [6] W. Mlak, Algebraic polynomially bounded operators, Ann. Polon. Math. 29 (1974), 133-139. MR 0346567 (49:11292)
  • [7] B. Morrel and P. Muhly, Centered operators, Studia Math. 51 (1974), 251-263. MR 0355658 (50:8132)
  • [8] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), 1-17. MR 733029 (86c:47021)
  • [9] V. I. Paulsen, C. M. Pearcy, and S. Petrović, On centered and weakly centered operators, J. Funct Anal. (submitted).
  • [10] S. Petrović, A dilation theory for polynomially bounded operators, J. Funct. Anal. 108 (1992), 458-469. MR 1176683 (93j:47008)
  • [11] A. L. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory, Math. Monographs Surveys, vol. 13, Amer. Math. Soc., Providence, RI, 1974, pp. 49-128. MR 0361899 (50:14341)
  • [12] M. H. Stone, Boundedness properties in function lattices, Canad. J. Math 1 (1949), 176-186. MR 0029091 (10:546a)
  • [13] B. Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Magyar Tud. Akad. Mat. Kutató Int. Köze 4 (1959), 89-93. MR 0108722 (21:7436)
  • [14] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, American Elsevier, New York, 1970. MR 0275190 (43:947)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B99, 47A45, 47A65

Retrieve articles in all journals with MSC: 47B99, 47A45, 47A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1182705-8
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society