Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On upper semicontinuity of duality mappings


Authors: Manuel D. Contreras and Rafael Payá
Journal: Proc. Amer. Math. Soc. 121 (1994), 451-459
MSC: Primary 46B10; Secondary 46B20
DOI: https://doi.org/10.1090/S0002-9939-1994-1215199-4
MathSciNet review: 1215199
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give new sufficient conditions for a Banach space to be an Asplund (or reflexive) space in terms of certain upper semicontinuity of the duality mapping.


References [Enhancements On Off] (What's this?)

  • [1] C. Aparicio, F. Ocaña, R. Paya, and A. Rodríguez, A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasgow Math. J. 28 (1986), 121-137. MR 848419 (87j:46026)
  • [2] E. Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47. MR 0231199 (37:6754)
  • [3] D. Cudia, The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284-314. MR 0163143 (29:446)
  • [4] M. M. Day, Normed linear spaces, Springer-Verlag, New York, 1973. MR 0344849 (49:9588)
  • [5] J. Diestel, Geometry of Banach spaces--Selected topics, Lecture Notes in Math., vol. 485, Springer-Verlag, New York, 1975. MR 0461094 (57:1079)
  • [6] J. Diestel and B. Faires, On vector measures, Trans. Amer. Math. Soc. 198 (1974), 253-271. MR 0350420 (50:2912)
  • [7] I. Ekeland and G. Lebourg, Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces, Trans. Amer. Math. Soc. 224 (1976), 193-216. MR 0431253 (55:4254)
  • [8] K. Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553-568. MR 0098976 (20:5421)
  • [9] C. Franchetti, Duality mapping and homeomorphisms in Banach spaces, Extraeta Math. Actas II Congreso Analisis Funcional, Univ. Extremadura, Spain, 1990, pp. 73-80.
  • [10] C. Franchetti and R. Payá, Banach spaces with strongly subdifferentiable norm, Boll. Uni. Mat. Ital. VII-B (1993), 45-70. MR 1216708 (94d:46015)
  • [11] J. R. Giles, D. A. Gregory, and B. Sims, Geometrical implications of upper semi-continuity of the duality mapping on a Banach space, Pacific J. Math. 79 (1978), 99-109. MR 526669 (80b:46025)
  • [12] G. Godefroy, Application a la dualité d'une propriete d'intersection de boules, Math. Z. 182 (1983), 233-236. MR 689300 (84c:46013)
  • [13] -, Some applications of Simons' inequality, Sem. Funct. Anal., University of Murcia (to appear).
  • [14] G. Godefroy and N. J. Kalton, The ball topology and its applications, Contemp. Math., Amer. Math. Soc., Providence, RI, vol. 85, 1989, pp. 195-237. MR 983386 (90c:46022)
  • [15] G. Godefroy and V. Zizler, Roughness properties of norms on non-Asplund spaces, Michigan Math. J. 38 (1991), 461-466. MR 1116501 (93e:46018)
  • [16] D. A. Gregory, Upper semi-continuity of subdifferential mappings, Canad. Math. Bull. 23 (1980), 11-19. MR 573553 (81e:46009)
  • [17] R. Haydon, A counterexample to several questions about scattered compact spaces, Bull. London Math. Soc. 22 (1990), 261-268. MR 1041141 (91h:46045)
  • [18] Zhibao Hu and Bor-Luh Lin, Smoothness and the asymptotic-norming properties of Banach spaces, Bull. Austral. Math. Soc. 45 (1992), 285-296. MR 1155487 (93d:46026)
  • [19] R. R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Math., vol. 1364, Springer-Verlag, New York, 1989. MR 984602 (90g:46063)
  • [20] S. Simons, A convergence theorem with boundary, Pacific J. Math. 40 (1972), 703-708. MR 0312193 (47:755)
  • [21] C. Stegall, The duality between Asplund spaces and spaces with the Radon-Nikodym property, Israel J. Math. 29 (1978), 408-412. MR 0493268 (58:12297)
  • [22] W. Y. Zhang, On weakly smooth Banach spaces, Dongbei Shuxue 3 (1987), 140-142. (Chinese) MR 952679 (89m:46026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B10, 46B20

Retrieve articles in all journals with MSC: 46B10, 46B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1215199-4
Keywords: Asplund space, Fréchet-differentiability, duality mapping, upper semi-continuous set-valued mapping
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society