An explicit formula for the Picard group of the cyclic group of order

Author:
Alexander Stolin

Journal:
Proc. Amer. Math. Soc. **121** (1994), 375-383

MSC:
Primary 11R65; Secondary 11R21, 19A31

DOI:
https://doi.org/10.1090/S0002-9939-1994-1243832-X

MathSciNet review:
1243832

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a formula for the Picard group of the integer group ring of the cyclic group of order for any odd prime *p*. As a corollary one gets a formula for properly irregular prime *p* in terms of Bernoulli numbers.

**[B]**Hyman Bass,*Algebraic 𝐾-theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**0249491****[B-Sh]**A. I. Borevich and I. R. Shafarevich,*Number theory*, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR**0195803****[C-F]***Algebraic number theory*, Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union. Edited by J. W. S. Cassels and A. Fröhlich, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. MR**0215665****[C-R]**Charles W. Curtis and Irving Reiner,*Methods of representation theory. Vol. II*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR**892316****[G]**Steven Galovich,*The class group of a cyclic 𝑝-group*, J. Algebra**30**(1974), 368–387. MR**0476838**, https://doi.org/10.1016/0021-8693(74)90210-5

Steven Galovich,*Corrigendum: “The class group of a cyclic 𝑝-group” (J. Algebra 30 (1974), 368–387)*, J. Algebra**47**(1977), no. 2, 547–548. MR**0476839**, https://doi.org/10.1016/0021-8693(77)90240-X**[K-M]**Michel A. Kervaire and M. Pavaman Murthy,*On the projective class group of cyclic groups of prime power order*, Comment. Math. Helv.**52**(1977), no. 3, 415–452. MR**0476693**, https://doi.org/10.1007/BF02567377**[M]**John Milnor,*Introduction to algebraic 𝐾-theory*, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 72. MR**0349811****[S1]**A. Stolin,*On the*-*group of the integer group ring of the cyclic group of order*, Proceeding of the All-Union Conference on the Theory of Rings, Algebras, Modules, Kishinev, 1980. (Russian)**[S2]**-,*On the*-*group of the integer group ring of the cyclic group of order*, preprint, Kharkov University, 1980. (Russian)**[S3]**-,*On the Picard group of the integer group ring of a cyclic p-group and of rings close to them*, preprint, Kharkov Univ., 1984. (Russian)**[U]**Stephen V. Ullom,*Fine structure of class groups of cyclic 𝑝-groups*, J. Algebra**49**(1977), no. 1, 112–124. MR**0491601**, https://doi.org/10.1016/0021-8693(77)90271-X

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11R65,
11R21,
19A31

Retrieve articles in all journals with MSC: 11R65, 11R21, 19A31

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1243832-X

Article copyright:
© Copyright 1994
American Mathematical Society