Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A functional equation from probability theory


Author: John A. Baker
Journal: Proc. Amer. Math. Soc. 121 (1994), 767-773
MSC: Primary 39B22; Secondary 62E10
MathSciNet review: 1186127
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The functional equation

$\displaystyle f(x) = \prod\limits_{j = 1}^N {{{[f({\beta _j}x)]}^{{\gamma _j}}}}$ ($ (1)$)

has been used by Laha and Lukacs (Aequationes Math. 16 (1977), 259-274) to characterize normal distributions. The aim of the present paper is to study (1) under somewhat different assumptions than those assumed by Laha and Lukacs by using techniques which, in the author's opinion, are simpler than those employed by the afore-mentioned authors. We will prove, for example, that if $ 0 < {\beta _j} < 1$ and $ {\gamma _j} > 0$ for $ 1 \leq j \leq N, \sum {_{j = 1}^N\beta _j^k{\gamma _j} = 1}$, where k is a natural number, $ f:\mathbb{R} \to [0, + \infty )$, (1) holds for $ x \in \mathbb{R}$ and $ {f^{(k)}}(0)$ exists then either $ f \equiv 0$ or there exists a real constant c such that $ f(x) = \exp (c{x^k})$ for all $ x \in \mathbb{R}$.

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 39B22, 62E10

Retrieve articles in all journals with MSC: 39B22, 62E10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1994-1186127-5
PII: S 0002-9939(1994)1186127-5
Keywords: Functional equation, probability
Article copyright: © Copyright 1994 American Mathematical Society